
Chapter IV: Describing and Parsing

Language disguises thought. . . The tacit conventions on which
the understanding of everyday language depends are enormously
complicated.

— Ludwig Wittgenstein (1889–1951), Tractatus

§26 Describing objects and rooms

Talking about the state of the world is much easier than listening
to the player’s intentions for it. Despite this, the business of
description takes up a fair part of this chapter since the designer of a
really complex game will eventually need to know almost every rule

involved. (Whereas nobody would want to know everything about the parser.)
The simplest description of an object is its ‘‘short name’’. For instance,

print (a) brass_lamp;

may result in ‘‘an old brass lamp’’ being printed. There are four such forms of
print:

print (the) obj Print the object with its definite article
print (The) obj The same, but capitalised
print (a) obj Print the object with indefinite article
print (name) obj Print the object’s short name alone

and these can be freely mixed into lists of things to print or print_ret, as for
example:

"The ogre declines to eat ", (the) noun, ".";

•EXERCISE 62
When referring to animate objects, you sometimes need to use pronouns such as
‘‘him’’. Define new printing routines so that print "You throw the book at ",
(PronounAcc) obj, "!"; will insert the right accusative pronouns.

§

44 There is also a special syntax print (object) for printing object names, but do
not use it without good reason: it doesn’t understand some of the features below and is
not protected against crashing if you mistakenly try to print the name for an object that
doesn’t exist.

· · · · ·

Inform tries to work out the right indefinite article for any object automatically.
In English-language games, it uses ‘an’ when the short name starts with a vowel
and ‘a’ when it does not (unless the name is plural, when ‘some’ is used in
either case). You can override this by setting article yourself, either to some
text or a routine to print some. Here are some possibilities, arranged as ‘‘article
/ name’’:

‘‘a / platinum bar’’, ‘‘an / orange balloon’’, ‘‘your / Aunt Jemima’’,
‘‘some bundles of / reeds’’, ‘‘far too many / marbles’’,
‘‘The / London Planetarium’’

If the object is given the attribute proper then its name is treated as a
proper noun taking no article, so the value of article is ignored. Objects
representing named people usually have proper, and so might a book like
‘‘Whitaker’s Almanac’’.

Definite articles are always ‘‘the’’, except for proper nouns. Thus

‘‘the / platinum bar’’, ‘‘Benjamin Franklin’’, ‘‘Elbereth’’

are all printed by print (the) ..., the latter two objects being proper.
A single object whose name is plural, such as ‘‘grapes’’ or ‘‘marble pillars’’,

should be given the attribute pluralname. As a result the library might say,
e.g., ‘‘You can’t open those’’ instead of ‘‘You can’t open that’’. As mentioned
above, the indefinite article becomes ‘‘some’’, and the player can use the
pronoun ‘‘them’’ to refer to the object, so for instance ‘‘take them’’ to pick up
the grapes-object.

4 You can give animate objects the attributes male, female or neuter to help the
parser understand pronouns properly. animate objects are assumed to be male if you
set neither alternative.

4 There’s usually no need to worry about definite and indefinite articles for room
objects, as the standard Inform rules never print them.

· · · · ·

§

The short name of an object is normally the text given in double-quotes at the
head of its definition. This is very inconvenient to change during play when,
for example, ‘‘blue liquid’’ becomes ‘‘purple liquid’’ as a result of a chemical
reaction. A more flexible way to specify an object’s short name is with the
short_name property. To print the name of such an object, Inform does the
following:
(1) If the short_name is a string, it’s printed and that’s all.
(2) If it is a routine, then it is called. If it returns true, that’s all.
(3) The text given in the header of the object definition is printed.

For example, the dye might be defined with:

short_name [;
switch(self.colour) {

1: print "blue ";
2: print "purple ";
3: print "horrid sludge"; rtrue;

}
],

with "liquid" as the short name in its header. According to whether its colour
property is 1, 2 or 3, the printed result is ‘‘blue liquid’’, ‘‘purple liquid’’ or
‘‘horrid sludge’’.

4 Alternatively, define the dye with short_name "blue liquid" and then simply
execute dye.short_name = "purple liquid"; when the time comes.

•EXERCISE 63
Design a chessboard of sixty-four locations with a map corresponding to an eight-by-
eight grid, so that White advances north towards Black, with pieces placed on the
board according to a game position. Hint: using flexible routines for short_name, this
can be done with just two objects, one representing all sixty-four squares, the other
representing all thirty-two pieces.

· · · · ·

For many objects the indefinite article and short name will most often be seen
in inventory lists, such as:

>inventory
You are carrying:

a leaf of mint
a peculiar book
your satchel (which is open)

a green cube

§

Some objects, though, ought to have fuller entries in an inventory: a wine
bottle should say how much wine is left, for instance. The invent property is
designed for this. The simplest way to use invent is as a string. For instance,
declaring a peculiar book with

invent "that harmless old book of Geoffrey’s",

will make this the inventory line for the book. In the light of events, it could
later be changed with a statement like:

book.invent = "that lethal old book of Geoffrey’s";

4 Note that this string becomes the whole inventory entry: if the object were an
open container, its contents wouldn’t be listed, which might be unfortunate. In such
circumstances it’s better to write an invent routine, and that’s also the way to append
text like ‘‘(half-empty)’’.

4 Each line of an inventory is produced in two stages. First, the basic line:

(1a) The global variable inventory_stage is set to 1.
(1b) The invent routine is called (if there is one). If it returns true, stop here.
(1c) The object’s indefinite article and short-name are printed.

Second, little informative messages like ‘‘(which is open)" are printed, and inventories
are given for the contents of open containers:

(2a) The global variable inventory_stage is set to 2.
(2b) The invent routine is called (if there is one). If it returns true, stop here.
(2c) A message such as ‘‘(closed, empty and providing light)’’ is printed, as appropriate.
(2d) If it is an open container, or a supporter, or is transparent, then its contents

are inventoried.

After each line is printed, linking text such as a new-line or a comma is printed,
according to the current ‘‘list style’’.

For example, here is the invent routine used by the matchbook in ‘Toyshop’:

invent [i;
if (inventory_stage == 2) {

i = self.number;
if (i == 0) print " (empty)";
if (i == 1) print " (1 match left)";
if (i > 1) print " (", i, " matches left)";

}
],

•44EXERCISE 64
Suppose you want to change the whole inventory line for an ornate box but you can’t
use an invent string, or return true from stage 1, because you still want stage 2d to
happen properly (so that its contents will be listed). How can you achieve this?

§

· · · · ·

The largest and most complicated messages the Inform library ever prints on
its own initiative are room descriptions, printed when the Look action is carried
out (for instance, when the statement <Look>; triggers a room description).
What happens is: the room’s short name is printed, usually emphasised in
bold-face, then the description, followed by a list of the objects residing
there which aren’t concealed or scenery.

Chapter III mentioned many different properties – initial, when_on,
when_off and so on – giving descriptions of what an object looks like when in
the same room as the player: some apply to doors, others to switchable objects
and so on. All of them can be routines to print text, instead of being strings to
print. The precise rules are given below.

But the whole system can be bypassed using the describe property. If an
object gives a describe routine then this takes priority over everything: if it
returns true, the library assumes that the object has already been described,
and prints nothing further. For example:

describe [;
"^The platinum pyramid catches the light beautifully.";

],

Unlike an initial description, this is still seen even if the pyramid has moved,
i.e., been held by the player at some stage.

4 Note the initial ^ (new-line) character. The library doesn’t print a skipped line
itself before calling describe because it doesn’t know yet whether the routine will want
to say anything. A describe routine which prints nothing and returns true makes an
object invisible, as if it were concealed.

44Here is exactly how a room description is printed. Recall from §21 that location
holds the player’s location if there is light, and thedark if not, and see §21 for the
definition of ‘‘visibility ceiling’’, which roughly means the outermost thing the player
can see: normally the location, but possibly a closed opaque container which the player
is inside. First the top line:

(1a) A new-line is printed. The short name of the visibility ceiling is printed, using
emphasised type, which on most models of computer appears as bold face.

(1b) If the player is on a supporter, then ‘‘ (on 〈something〉)’’ is printed; if inside
something (other than the visibility ceiling), then ‘‘ (in 〈something〉)’’.

(1c) ‘‘ (as 〈something〉)’’ is printed if this was requested by the game’s most recent
call to ChangePlayer: for instance, ‘‘ (as a werewolf)’’. (See §21 for details of
ChangePlayer.)

(1d) A new-line is printed.

§

Now the long description. This step is sometimes skipped, depending on which ‘‘look
mode’’ the player has chosen: in the normal mode, it is skipped if the player has just
moved by a Go action into a location already visited; in ‘‘superbrief’’ mode it is always
skipped, while in ‘‘verbose’’ mode it is never skipped.

(2a) Starting with the visibility ceiling and working down through ‘‘levels’’ of enterable
objects containing the player, a long description is printed, as follows:

(i) If the level is the current value of location, that is, the current room
or else thedark, then: if location provides describe then the message
location.describe() is sent. If not, then location.description() is
sent. Every room is required to provide one or the other. (This is now
redundant. In earlier Informs, description could only be a string, so
describe was there in case a routine was needed.)

(ii) If not, the level must be an enterable object E. If E provides it, the message
E.inside_description() is sent.

(2b) After the description of each visibility level, the objects contained in that level are
‘‘listed’’ (see below).

The library has now finished, but your game gets a chance to add a postscript by means
of an entry point routine:

(3) The entry point LookRoutine is called.

44 Besides printing room descriptions, the Look action has side-effects: it can award
the player some points, or mark a room with the attribute visited. For these rules in
full, see §21.

44 The visited attribute is only given to a room after its description has been printed
for the first time. This is convenient for making the description different after the first
time.

44When ‘‘listing objects’’ (as in 3a and 3b above) some objects are given a paragraph
to themselves, while others are lumped together in a list at the end. The following
objects are not mentioned at all: the player; what the player is in or on (if anything),
because this has been taken care of in the short or long description already; and
anything which has the attributes scenery or concealed. The remaining objects are
looked through, eldest first, as follows:

(1) If the object has a describe routine, run it. If it returns true, stop here and don’t
mention the object at all.

(2) Work out the ‘‘description property’’ for the object:
(a) For a container, this is when_open or when_closed;
(b) Otherwise, for a switchable object this is when_on or when_off;
(c) Otherwise, for a door this is when_open or when_closed;
(d) Otherwise, it’s initial.

(3) If either the object doesn’t provide this property or the object has moved and the
property isn’t when_off or when_closed then the object will be listed at the end,
not given a paragraph of its own.

§

(4) Otherwise a new-line is printed and the property is printed (if it’s a string) or run
(if it’s a routine). If it is a routine, it had better print something, as otherwise there
will be a spurious blank line in the room description.

4 Note that although a supporter which is scenery won’t be mentioned, anything
on top of it may well be. If this is undesirable, set these objects on top to be concealed.

4 Objects which have just been pushed into a new room are not listed in that room’s
description on the turn in question. This is not because of any rule about room
descriptions, but because the pushed object is moved into the new room only after
the room description is made. This means that when a wheelbarrow is pushed for a
long distance, the player does not have to keep reading ‘‘You can see a wheelbarrow
here.’’ every move, as though that were a surprise.

4 You can use a library routine called Locale to perform object listing. See §A3 for
details, but suffice to say here that the process above is equivalent to executing

if (Locale(location, "You can see", "You can also see"))
print " here.^";

Locale is useful for describing areas of a room which are sub-divided off while remaining
part of the same location, such as the stage of a theatre.

•44EXERCISE 65
As mentioned above, the library implements ‘‘superbrief’’ and ‘‘verbose’’ modes for
room description (one always omits long room descriptions, the other never does).
How can verbose mode automatically print room descriptions every turn? (Some of the
later Infocom games did this.)

•REFERENCES
‘Balances’ often uses short_name, especially for the white cubes (whose names change)
and lottery tickets (whose numbers are chosen by the player). ‘Adventureland’ uses
short_name in simpler ways: see the bear and the bottle, for instance. •The scroll
class of ‘Balances’ uses invent. •See the ScottRoom class of ‘Adventureland’ for a
radically different way to describe rooms (in pidgin English, like telegraphese, owing to
an extreme shortage of memory to store text – Scott Adams was obliged to write for
machines with under 16K of free memory).

§27 Listing and grouping objects

As some day it may happen that a victim must be found
I’ve got a little list – I’ve got a little list
Of society offenders who might well be underground,
And who never would be missed
Who never would be missed!

— W. S. Gilbert (1836–1911), The Mikado

Listing objects tidily in a grammatical sentence is more difficult
than it seems, especially when taking plurals and groups of similar
objects into account. Here, for instance, is a list of 23 items printed
by a room description in the demonstration game ‘List Property’:

You can see a plastic fork, knife and spoon, three hats (a fez, a Panama and
a sombrero), the letters X, Y, Z, P, Q and R from a Scrabble set, Punch
magazine, a recent issue of the Spectator, a die and eight coins (four silver,
one bronze and three gold) here.

Fortunately, the library’s list-maker is available to the public by calling:

WriteListFrom(object, style);

where the list will start from the given object and go along its siblings. Thus, to
list all the objects inside X, list from child(X). What the list looks like depends
on a ‘‘style’’ made by adding up some of the following:

ALWAYS_BIT Always recurse downwards
CONCEAL_BIT Misses out concealed or scenery objects
DEFART_BIT Uses the definite article in list
ENGLISH_BIT English sentence style, with commas and ‘and’
FULLINV_BIT Gives full inventory entry for each object
INDENT_BIT Indents each entry according to depth
ISARE_BIT Prints ‘‘ is " or ‘‘ are " before list
NEWLINE_BIT Prints new-line after each entry
NOARTICLE_BIT Prints no articles, definite or indefinite
PARTINV_BIT Only brief inventory information after entry
RECURSE_BIT Recurses downwards with usual rules
TERSE_BIT More terse English style
WORKFLAG_BIT At top level (only), only lists objects

which have the workflag attribute

§

Recursing downwards means that if an object is listed, then its children are
also listed, and so on for their children. The ‘‘usual rules’’ of RECURSE_BIT
are that children are only listed if the parent is transparent, or a supporter,
or a container which is open – which is the definition of ‘‘see-through’’ used
throughout the Inform library. ‘‘Full inventory information’’ means listing
objects exactly as if in an inventory, according to the rigmarole described in
§26. ‘‘Brief inventory information’’ means listing as if in a room description:
that is, noting whether objects are open, closed, empty or providing light
(except that light is only mentioned when in a room which is normally dark).

The best way to decide which bits to set is to experiment. For example, a
‘tall’ inventory is produced by:

WriteListFrom(child(player),
FULLINV_BIT + INDENT_BIT + NEWLINE_BIT + RECURSE_BIT);

and a ‘wide’ one by:

WriteListFrom(child(player),
FULLINV_BIT + ENGLISH_BIT + RECURSE_BIT);

which produce effects like:
>inventory tall
You are carrying:

a bag (which is open)
three gold coins
two silver coins
a bronze coin

four featureless white cubes
a magic burin
a spell book

>inventory wide
You are carrying a bag (which is open), inside which are three gold coins, two
silver coins and a bronze coin, four featureless white cubes, a magic burin
and a spell book.

except that the ‘‘You are carrying’’ part is not done by the list-maker, and nor
is the final full stop in the second example.

4 The workflag is an attribute which the library scribbles over from time to time as
temporary storage, but you can use it for short periods with care. In this case it makes
it possible to specify any reasonable list.

44 WORKFLAG_BIT and CONCEAL_BIT specify conflicting rules. If they’re both given,
then what happens is: at the top level, but not below, everything with workflag is
included; on lower levels, but not at the top, everything without concealed or scenery
is included.

§

•EXERCISE 66
Write a DoubleInvSub action routine to produce an inventory like so:

You are carrying four featureless white cubes, a magic burin and a spell book.
In addition, you are wearing a purple cloak and a miner’s helmet.

· · · · ·

Lists are shorter, neater and more elegantly phrased if similar objects are
grouped together. For instance, keys, books and torch batteries are all grouped
together in lists printed by the game ‘Curses’. To achieve this, the objects
belonging to such a group (all the keys for instance) provide a common value
of the property list_together. If this value is a number between 1 and 1000,
the library will unobtrusively group the objects with that value together so
that they appear consecutively in any list. For instance ‘Curses’ includes the
following definitions:

Constant KEY_GROUP = 1;
...
Object -> -> brass_key "small brass key"
with ...

list_together KEY_GROUP;

and similarly for the other keys. Alternatively, instead of being a small number
the common value can be a string such as "foodstuffs". If so, then it must
either be given in a class definition or else as a constant, like so:

Constant FOOD_GROUP = "foodstuffs";

(In particular, the actual text should only be written out in one place in the
source code. Otherwise two or more different strings will be made, which just
happen to have the same text as each other, and Inform will consider these to
be different values of list_together.) Lists will then cite, for instance,

three foodstuffs (a scarlet fish, some lembas wafer and an onion)

in running text, or

three foodstuffs:
a scarlet fish
some lembas wafer
an onion

§

in indented lists. This only happens when two or more are gathered together.
Finally, the common value of list_together can be a routine, such as:

list_together [;
if (inventory_stage == 1) {

print "heaps of food, notably";
if (c_style & INDENT_BIT == 0) print " ";

else print " --^";
} else if (c_style & INDENT_BIT == 0)

print " (which only reminds you how hungry you are)";
],

Typically this might be part of a class definition from which all the objects in
question inherit. Any list_together routine will be called twice: once, with
inventory_stage set to 1, as a preamble to the list of items, and once (with 2)
to print any postscript required. It is allowed to change c_style, the current
list style, without needing to restore the old value and may, by returning true
from stage 1, signal the list-maker not to print a list at all. The above example
would give a conversational sentence-like list as follows:

heaps of food, notably a scarlet fish, some lembas wafer and an onion (which
only reminds you how hungry you are)

and would also look suitable in sober tall-inventory-like columns:

heaps of food, notably --
a scarlet fish
some lembas wafer
an onion

4 A list_together routine has the opportunity to look through the objects which
are about to be listed together, by looking at some of the list-maker’s variables.
parser_one holds the first object in the group and parser_two holds the depth of
recursion in the list, which might be needed to keep the indentation straight. Applying
x = NextEntry(x,parser_two) will move x on from one object to the next in the
group being listed.

4 The library variable listing_together is set to the first object of a group being
listed, when a group is being listed, or to nothing the rest of the time. This is useful
because an object’s short_name routine might need to behave differently during a
grouped listing to the rest of the time.

•4EXERCISE 67
Implement the Scrabble pieces from the example list above.

§

•44EXERCISE 68
Implement the three denominations of coin.

•44EXERCISE 69
Implement the I Ching in the form of six coins, three gold (goat, deer and chicken),
three silver (robin, snake and bison) which can be thrown to reveal gold and silver
trigrams.

•44EXERCISE 70
Design a class called AlphaSorted, members of which are always listed in alphabetical
order. Although this could be done with list_together, this exercise is here to draw
the reader’s attention to an ugly but sometimes useful alternative. The only actions
likely to produce lists are Look, Search, Open and Inv: so react to these actions by
rearranging the object tree into alphabetical order before the list-writer gets going.

•REFERENCES
A good example of WriteListFrom in action is the definition of CarryingClass from
the example game ‘The Thief’, by Gareth Rees. This alters the examine description of
a character by appending a list of what that person is carrying and wearing. •Andreas
Hoppler has written an alternative list-writing library extension called "Lister.h",
which defines a class Lister so that designers can customise their own listing engines
for different purposes in a single game. •Anson Turner’s example program "52.inf"
models a deck of cards, and an extensive list_together sorts out hands of cards.

§28 How nouns are parsed

The Naming of Cats is a difficult matter,
It isn’t just one of your holiday games;
You may think at first I’m as mad as a hatter
When I tell you, a cat must have THREE DIFFERENT NAMES.

— T. S. Eliot (1888–1965), The Naming of Cats

Suppose we have a tomato defined with

name ’fried’ ’green’ ’tomato’,

but which is going to redden later and need to be referred to as ‘‘red tomato’’.
The name property holds an array of dictionary words, so that

(tomato.#name)/2 == 3
tomato.&name-->0 == ’fried’
tomato.&name-->1 == ’green’
tomato.&name-->2 == ’tomato’

(Recall that X.#Y tells you the number of -> entries in such a property array,
in this case six, so that X.#Y/2 tells you the number of --> entries, in this case
three.) You are quite free to alter this array during play:

tomato.&name-->1 = ’red’;

The down side of this technique is that it’s clumsy, when all’s said and
done, and not so very flexible, because you can’t change the length of the
tomato.&name array during play. Of course you could define the tomato

with name ’fried’ ’green’ ’tomato’ ’blank.’ ’blank.’ ’blank.’
’blank.’ ’blank.’ ’blank.’ ’blank.’ ’blank.’ ’blank.’
’blank.’ ’blank.’ ’blank.’ ’blank.’ ’blank.’ ’blank.’,

or something similar, giving yourself another (say) fifteen ‘‘slots’’ to put new
names into, but this is inelegant even by Inform standards. Instead, an object
like the tomato can be given a parse_name routine, allowing complete flexibility
for the designer to specify just what names it does and doesn’t match. It is
time to begin looking into the parser and how it works.

§

· · · · ·

The Inform parser has two cardinal principles: firstly, it is designed to be as
‘‘open-access’’ as possible, because a parser cannot ever be general enough for
every game without being highly modifiable. This means that there are many
levels on which you can augment or override what it does. Secondly, it tries
to be generous in what it accepts from the player, understanding the broadest
possible range of commands and making no effort to be strict in rejecting
ungrammatical requests. For instance, given a shallow pool nearby, ‘‘examine
shallow’’ has an adjective without a noun: but it’s clear what the player means.
In general, all sensible commands should be accepted but it is not important
whether or not nonsensical ones are rejected.

The first thing the parser does is to read in text from the keyboard and
break it up into a stream of words: so the text ‘‘wizened man, eat the grey
bread’’ becomes

wizened / man / , / eat / the / grey / bread

and these words are numbered from 1. At all times the parser keeps a ‘‘word
number’’ marker to keep its place along this line, and this is held in the variable
wn. The routine NextWord() returns the word at the current position of the
marker, and moves it forward, i.e., adds 1 to wn. For instance, the parser
may find itself at word 6 and trying to match ‘‘grey bread’’ as the name of an
object. Calling NextWord() returns the value ’grey’ and calling it again gives
’bread’.

Note that if the player had mistyped ‘‘grye bread’’, ‘‘grye’’ being a word
which isn’t mentioned anywhere in the program or created by the library,
then NextWord() returns 0 for ‘not in the dictionary’. Inform creates the
dictionary of a story file by taking all the name words of objects, all the verbs
and prepositions from grammar lines, and all the words used in constants like
’frog’ written in the source code, and then sorting these into alphabetical
order.

4 However, the story file’s dictionary only has 9-character resolution. (And only
6 if Inform has been told to compile an early-model story file: see §45.) Thus the
values of ’polyunsaturate’ and ’polyunsaturated’ are equal. Also, upper case and
lower case letters are considered the same. Although dictionary words are permitted
to contain numerals or typewriter symbols like -, : or /, these cost as much as two
ordinary letters, so ’catch-22’ looks the same as ’catch-2’ or ’catch-207’.

44 A dictionary word can even contain spaces, full stops or commas, but if so it is
‘untypeable’. For instance, ’in,out’ is an untypeable word because if the player were
to type something like ‘‘go in,out’’, the text would be broken up into four words, go /

§

in / , / out. Thus ’in,out’ may be in the story file’s dictionary but it will never match
against any word of what the player typed. Surprisingly, this can be useful, as it was at
the end of §18.

· · · · ·

Since the story file’s dictionary isn’t always perfect, there is sometimes no
alternative but to actually look at the player’s text one character at a time: for
instance, to check that a 12-digit phone number has been typed correctly and
in full.

The routine WordAddress(wordnum) returns a byte array of the characters
in the word, and WordLength(wordnum) tells you how many characters there
are in it. Given the above example text of ‘‘wizened man, eat the grey bread’’:

WordLength(4) == 3
WordAddress(4)->0 == ’e’
WordAddress(4)->1 == ’a’
WordAddress(4)->2 == ’t’

because word number 4 is ‘‘eat’’. (Recall that the comma is considered as a
word in its own right.)

4 The parser provides a basic routine for comparing a word against the texts ’0’,
’1’, ’2’, . . ., ’9999’, ’10000’ or, in other words, against small numbers. This is
the library routine TryNumber(wordnum), which tries to parse the word at wordnum as
a number and returns that number, if it finds a match. Besides numbers written out
in digits, it also recognises the texts ’one’, ’two’, ’three’, . . ., ’twenty’. If it fails
to recognise the text as a number, it returns −1,000; if it finds a number greater than
10,000, it rounds down and returns 10,000.

· · · · ·

To return to the naming of objects, the parser normally recognises any
arrangement of some or all of the name words of an object as a noun which
refers to it: and the more words, the better the match is considered to be.
Thus ‘‘fried green tomato’’ is a better match than ‘‘fried tomato’’ or ‘‘green
tomato’’ but all three are considered to match. On the other hand, so is ‘‘fried
green’’, and ‘‘green green tomato green fried green’’ is considered a very good
match indeed. The method is quick and good at understanding a wide variety
of sensible texts, though poor at throwing out foolish ones. (An example of
the parser’s strategy of being generous rather than strict.) To be more precise,
here is what happens when the parser wants to match some text against an
object:

§

(1) If the object provides a parse_name routine, ask this routine to determine how
good a match there is.

(2) If there was no parse_name routine, or if there was but it returned −1, ask the
entry point routine ParseNoun, if the game has one, to make the decision.

(3) If there was no ParseNoun entry point, or if there was but it returned −1, look at
the name of the object and match the longest possible sequence of words given in
the name.

So: a parse_name routine, if provided, is expected to try to match as many
words as possible starting from the current position of wn and reading them
in one at a time using the NextWord() routine. Thus it must not stop just
because the first word makes sense, but must keep reading and find out how
many words in a row make sense. It should return:

0 if the text didn’t make any sense at all,
k if k words in a row of the text seem to refer to the object, or
−1 to tell the parser it doesn’t want to decide after all.

The word marker wn can be left anywhere afterwards. For example, here is the
fried tomato with which this section started:

parse_name [n colour;
if (self.ripe) colour = ’red’; else colour = ’green’;
while (NextWord() == ’tomato’ or ’fried’ or colour) n++;
return n;

],

The effect of this is that if tomato.ripe is true then the tomato responds to
the names ‘‘tomato’’, ‘‘fried’’ and ‘‘red’’, and otherwise to ‘‘tomato’’, ‘‘fried’’
and ‘‘green’’.

As a second example of how parse_name can be useful, suppose you
define:

Object -> "fly in amber"
with name ’fly’ ’in’ ’amber’;

If the player then types ‘‘put fly in amber in hole’’, the parser will be thrown,
because it will think ‘‘fly in amber in’’ is all just naming the object and then it
won’t know what the word ‘‘hole’’ is doing at the end. However:

Object -> "fly in amber"
with parse_name [;

if (NextWord() ~= ’fly’ or ’amber’) return 0;
if (NextWord() == ’in’ && NextWord() == ’amber’)

return 3;
return 1;

];

§

Now the word ‘‘in’’ is only recognised as part of the fly’s name if it is followed
by the word ‘‘amber’’, and the ambiguity goes away. (‘‘amber in amber’’ is
also recognised, but then it’s not worth the bother of excluding.)

4 parse_name is also used to spot plurals: see §29.

•EXERCISE 71
Rewrite the tomato’s parse_name to insist that the adjectives must come before the
noun, which must be present.

•EXERCISE 72
Create a musician called Princess who, when kissed, is transformed into ‘‘/?%?/ (the
artiste formerly known as Princess)’’.

•EXERCISE 73
Construct a drinks machine capable of serving cola, coffee or tea, using only one object
for the buttons and one for the possible drinks.

•EXERCISE 74
Write a parse_name routine which looks through name in just the way that the parser
would have done anyway if there hadn’t been a parse_name in the first place.

•4EXERCISE 75
Some adventure game parsers split object names into ‘adjectives’ and ‘nouns’, so that
only the pattern 〈0 or more adjectives〉 〈1 or more nouns〉 is recognised. Implement
this.

•EXERCISE 76
During debugging it sometimes helps to be able to refer to objects by their internal
numbers, so that ‘‘put object 31 on object 5’’ would work. Implement this.

•4EXERCISE 77
How could the word ‘‘#’’ be made a wild-card, meaning ‘‘match any single object’’?

•44EXERCISE 78
And how could ‘‘*’’ be a wild-card for ‘‘match any collection of objects’’? (Note: you
need to have read §29 to answer this.)

•REFERENCES
Straightforward parse_name examples are the chess pieces object and the kittens class of
‘Alice Through the Looking-Glass’. Lengthier ones are found in ‘Balances’, especially in
the white cubes class. •Miron Schmidt’s library extension "calyx_adjectives.h",
based on earlier work by Andrew Clover, provides for objects to have ‘‘adnames’’ as
well as ‘‘names’’: ‘‘adnames’’ are usually adjectives, and are regarded as being less good

§

matches for an object than ‘‘names’’. In this system ‘‘get string’’ would take either a
string bag or a ball of string, but if both were present would take the ball of string,
because ‘‘string’’ is in that case a noun rather than an adjective.

§29 Plural names for duplicated objects

A notorious challenge for adventure game parsers is to handle a
collection of, say, ten gold coins, allowing the player to use them
independently of each other, while gathering them together into
groups in descriptions and inventories. Two problems must be

overcome: firstly, the game has to be able to talk to the player in plurals, and
secondly vice versa. First, then, game to player:

Class GoldCoin
with name ’gold’ ’coin’,

short_name "gold coin",
plural "gold coins";

(and then similar silver and bronze coin classes)

Object bag "bag"
with name ’bag’,
has container open openable;

GoldCoin ->;
GoldCoin ->;
GoldCoin ->;
SilverCoin ->;
SilverCoin ->;
BronzeCoin ->;

Now we have a bag of six coins. The player looking inside the bag will get

>look inside bag
In the bag are three gold coins, two silver coins and a bronze coin.

How does the library know that the three gold coins are the same as each
other, but the others different? It doesn’t look at the classes but the names. It
will only group together things which:

(a) have a plural set, and
(b) are ‘‘indistinguishable’’ from each other.

‘‘Indistinguishable’’ means they have the same name words as each other,
possibly in a different order, so that nothing the player can type will separate
the two.

§

4 Actually, it’s a little more subtle than this. What it groups together depends
slightly on the context of the list being written. When it’s writing a list which prints out
details of which objects are providing light, for instance (as an inventory does), it won’t
group together two objects if one is lit but the other isn’t. Similarly for objects with
visible possessions or which can be worn.

44 This ramifies further when the objects have a parse_name routine supplied. If they
have different parse_name routines, the library decides that they are distinguishable.
But if they have the same parse_name routine, for instance by inheriting it from a class
definition, then the library has no alternative but to ask them. What happens is that:

(1) A variable called parser_action is set to the special value ##TheSame, a value it
never has at any other time;

(2) Two variables, called parser_one and parser_two are set to the two objects in
question;

(3) Their parse_name routine is called. If it returns:
−1 the objects are declared ‘‘indistinguishable";
−2 they are declared different.

(4) Otherwise, the usual rules apply and the library looks at the ordinary name fields
of the objects.

44 You may even want to provide a parse_name routine for objects which otherwise
don’t need one, just to speed up the process of the library telling if two objects are
distinguishable – if there were 30 gold coins in one place the parser would be doing a
lot of work comparing names, but you can make the decision much faster.

•44EXERCISE 79
Perhaps the neatest trick of parsing in any Infocom game occurs in ‘Spellbreaker’,
which has a set of white cubes which are indistinguishable until the player writes words
onto them with a magic burin (a medieval kind of pen), after which it’s possible to tell
them apart. Imitate this in Inform.

· · · · ·

Secondly, the player talking to the computer. Suppose a game involves
collecting a number of similar items, such as a set of nine crowns in different
colours. Then you’d want the parser to recognise things like:

>drop all of the crowns except green
>drop the three other crowns

Putting the word ’crowns’ in the name lists of the crown objects is not quite
right, because the parser will still think that ‘‘crowns’’ might refer to a single
specific item. Instead, put in the word ’crowns//p’. The suffix //p marks out
the dictionary word ‘‘crowns’’ as one that can refer to more than one game
object at once. (So that you shouldn’t set this for the word ‘‘grapes’’ if a bunch

§

of grapes is a single game object; you should give that object the pluralname
attribute instead, as in §26 back at the start of this chapter.) For example the
GoldCoin class would read:

Class GoldCoin
with name ’gold’ ’coin’ ’coins//p’,

short_name "gold coin",
plural "gold coins";

Now when the player types ‘‘take coins’’, the parser interprets this as ‘‘take all
the coins within reach’’.

44 The only snag is that now the word ’coins’ is marked as //p everywhere in the
game, in all circumstances. Here is a more complicated way to achieve the same result,
but strictly in context of these objects alone. We need to make the parse_name routine
tell the parser that yes, there was a match, but that it was a plural. The way to do this
is to set parser_action to ##PluralFound, another special value. So, for example:

Class Crown
with parse_name [i j;

for (::) {
j = NextWord();
if (j == ’crown’ or self.name) i++;
else {

if (j == ’crowns’) {
parser_action = ##PluralFound; i++;

}
else return i;

}
}

];

This code assumes that the crown objects have just one name each, their colours.

•EXERCISE 80
Write a ‘cherub’ class so that if the player tries to call them ‘‘cherubs", a message like
‘‘I’ll let this go once, but the plural of cherub is cherubim" appears.

•REFERENCES
See the coinage of ‘Balances’.

§30 How verbs are parsed

‘‘. . .I can see that the grammar gets tucked into the tales and poetry
as one gives pills in jelly.’’

— Louisa May Alcott (1832–1888), Little Women

Here is how the parser reads in a whole command. Given a stream
of text like

saint / peter / , / take / the / keys / from / paul

it first breaks it into words, as shown, and then calls the entry point routine
BeforeParsing (which you can provide, if you want to, in order to meddle
with the text stream before parsing gets underway). The parser then works
out who is being addressed, if anyone, by looking for a comma, and trying out
the text up to there as a noun matching an animate or talkable object: in
this case St Peter. This person is called the ‘‘actor’’, since he or she is going
to perform the action, and is most often the player (thus, typing ‘‘myself, go
north’’ is equivalent to typing ‘‘go north’’). The next word, in this case ’take’,
is the ‘‘verb word’’. An Inform verb usually has several English verb words
attached, which are called synonyms of each other: for instance, the library is
set up with

‘‘take’’ = ‘‘carry’’ = ‘‘hold’’

all referring to the same Inform verb.

4 The parser sets up variables actor and verb_word while working. (In the example
above, their values would be the St Peter object and ’take’, respectively.)

4 This brief discussion is simplified in two ways. Firstly, it leaves out directions,
because Inform considers that the name of a direction-object implies ‘‘go’’: thus
‘‘north’’ means ‘‘go north’’. Secondly, it misses out the grammar property described in
§18, which can cause different actors to recognise different grammars.

•4EXERCISE 81
Use BeforeParsing to implement a lamp which, when rubbed, produces a genie who
casts a spell to make the player confuse the words ‘‘white’’ and ‘‘black’’.

· · · · ·

§

This section is about verbs, which are defined with ‘‘grammar’’, meaning usages
of the directives Verb and Extend. The library contains a substantial amount
of grammar as it is, and this forms (most of) the library file "Grammar.h".
Grammar defined in your own code can either build on this or selectively knock
it down, but either way it should be made after the inclusion of "Grammar.h".

For instance, making a new synonym for an existing verb is easy:

Verb ’steal’ ’acquire’ ’grab’ = ’take’;

Now ‘‘steal’’, ‘‘acquire’’ and ‘‘grab’’ are synonyms for ‘‘take’’.

4 One can also prise synonyms apart, as will appear later.

· · · · ·

To return to the text above, the parser has now recognised the English word
‘‘take’’ as one of those which can refer to a particular Inform verb. It has
reached word 5 and still has ‘‘the keys from paul’’ left to understand.

Every Inform verb has a ‘‘grammar’’ which consists of a list of one or
more ‘‘grammar lines’’, each of them a pattern which the rest of the text might
match. The parser tries the first, then the second and so on, and accepts the
earliest one that matches, without ever considering later ones.

A line is a row of ‘‘tokens’’. Typical tokens might mean ‘the name of a
nearby object’, ‘the word ’from’’ or ‘somebody’s name’. To match a line, the
parser must match against each token in sequence. Continuing the example,
the parser accepts the line of three tokens

〈one or more nouns〉 〈the word from〉 〈a noun〉

as matching ‘‘the keys from paul’’.
Every grammar line has the name of an action attached, and in this case it

is Remove: so the parser has ground up the original text into just four quantities,
ending up with

actor = StPeter action = Remove noun = gold_keys second = StPaul

The parser’s job is now complete, and the rest of the Inform library can get
on with processing the action or, as in this case, an order being addressed to
somebody other than the player.

4 The action for the line currently being worked through is stored in the variable
action_to_be; or, at earlier stages when the verb hasn’t been deciphered yet, it holds
the value NULL.

§

· · · · ·

The Verb directive creates Inform verbs, giving them some English verb words
and a grammar. The library’s "Grammar.h" file consists almost exclusively of
Verb directives: here is an example simplified from one of them.

Verb ’take’ ’get’ ’carry’ ’hold’
* ’out’ -> Exit
* multi -> Take
* multiinside ’from’ noun -> Remove
* ’in’ noun -> Enter
* multiinside ’off’ noun -> Remove
* ’off’ held -> Disrobe
* ’inventory’ -> Inv;

(You can look at the grammar being used in a game with the debugging verb
‘‘showverb’’: see §7.) Each line of grammar begins with a *, gives a list of
tokens as far as -> and then the action which the line produces. The first
line can only be matched by something like ‘‘get out’’, the second might be
matched by

‘‘take the banana’’
‘‘get all the fruit except the apple’’

and so on. A full list of tokens will be given later: briefly, ’out’ means the
literal word ‘‘out’’, multi means one or more objects nearby, noun means
just one and multiinside means one or more objects inside the second
noun. In this book, grammar tokens are written in the style noun to prevent
confusion (as there is also a variable called noun).

4 Some verbs are marked as meta – these are the verbs leading to Group 1 actions,
those which are not really part of the game’s world: for example, ‘‘save’’, ‘‘score’’ and
‘‘quit’’. For example:

Verb meta ’score’ * -> Score;

and any debugging verbs you create would probably work better this way, since
meta-verbs are protected from interference by the game and take up no game time.

· · · · ·

After the -> in each line is the name of an action. Giving a name in this way is
what creates an action, and if you give the name of one which doesn’t already

§

exist then you must also write a routine to execute the action, even if it’s one
which doesn’t do very much. The name of the routine is always the name of
the action with Sub appended. For instance:

[XyzzySub; "Nothing happens.";];
Verb ’xyzzy’ * -> Xyzzy;

will make a new magic-word verb ‘‘xyzzy’’, which always says ‘‘Nothing
happens’’ – always, that is, unless some before rule gets there first, as it might
do in certain magic places. Xyzzy is now an action just as good as all the
standard ones: ##Xyzzy gives its action number, and you can write before
rules for it in Xyzzy: fields just as you would for, say, Take.

4 Finally, the line can end with the word reverse. This is only useful if there are
objects or numbers in the line which occur in the wrong order. An example from the
library’s grammar:

Verb ’show’ ’present’ ’display’
* creature held -> Show reverse
* held ’to’ creature -> Show;

The point is that the Show action expects the first parameter to be an item, and the
second to be a person. When the text ‘‘show him the shield’’ is typed in, the parser
must reverse the two parameters ‘‘him’’ and ‘‘the shield’’ before causing a Show action.
On the other hand, in ‘‘show the shield to him’’ the parameters are in the right order
already.

· · · · ·

The library defines grammars for the 100 or so English verbs most often used
by adventure games. However, in practice you quite often need to alter these,
usually to add extra lines of grammar but sometimes to remove existing ones.
For instance, suppose you would like ‘‘drop charges’’ to be a command in a
detection game (or a naval warfare game). This means adding a new grammar
line to the ‘‘drop’’ verb. The Extend directive is provided for exactly this
purpose:

Extend ’drop’ * ’charges’ -> DropCharges;

Normally, extra lines of grammar are added at the bottom of those already
there, so that this will be the very last grammar line tested by the parser. This
may not be what you want. For instance, ‘‘take’’ has a grammar line reading

* multi -> Take

§

quite early on. So if you want to add a grammar line diverting ‘‘take 〈food〉" to
a different action, like so:

* edible -> Eat

(edible being a token matching anything which has the attribute edible)
then it’s no good adding this at the bottom of the Take grammar, because the
earlier line will always be matched first. What you need is for the new line to
go in at the top, not the bottom:

Extend ’take’ first
* edible -> Eat;

You might even want to throw away the old grammar completely, not just add
a line or two. For this, use

Extend ’press’ replace
* ’charges’ -> PressCharges;

and now the verb ‘‘press’’ has no other sense but this, and can’t be used in the
sense of pressing down on objects any more, because those grammar lines are
gone. To sum up, Extend can optionally take one of three keywords:

replace replace the old grammar with this one;
first insert the new grammar at the top;
last insert the new grammar at the bottom;

with last being the default.

4 In library grammar, some verbs have many synonyms: for instance,
’attack’ ’break’ ’smash’ ’hit’ ’fight’ ’wreck’ ’crack’
’destroy’ ’murder’ ’kill’ ’torture’ ’punch’ ’thump’

are all treated as identical. But you might want to distinguish between murder and
lesser crimes. For this, try

Extend only ’murder’ ’kill’ replace
* animate -> Murder;

The keyword only tells Inform to extract the two verbs ‘‘murder" and ‘‘kill". These then
become a new verb which is initially an identical copy of the old one, but then replace
tells Inform to throw that away in favour of an entirely new grammar. Similarly,

Extend only ’run’ * ’program’ -> Compute;

makes ‘‘run" behave exactly like ‘‘go" and ‘‘walk’’, as these three words are ordinarily
synonymous to the library, except that it also recognises ‘‘program", so that ‘‘run
program" activates a computer but ‘‘walk program" doesn’t. Other good pairs to
separate might be ‘‘cross’’ and ‘‘enter’’, ‘‘drop’’ and ‘‘throw’’, ‘‘give’’ and ‘‘feed’’,
‘‘swim’’ and ‘‘dive’’, ‘‘kiss’’ and ‘‘hug’’, ‘‘cut’’ and ‘‘prune’’. Bear in mind that once a
pair has been split apart like this, any subsequent change to one will not also change
the other.

§

44 Occasionally verb definition commands are not enough. For example, in the
original ‘Advent’, the player could type the name of an adjacent place which had
previously been visited, and be taken there. (This feature isn’t included in the Inform
example version of the game in order to keep the source code as simple as possible.)
There are several laborious ways to code this, but here’s a concise way. The library
calls the UnknownVerb entry point routine (if you provide one) when the parser can’t
even get past the first word. This has two options: it can return false, in which case
the parser just goes on to complain as it would have done anyway. Otherwise, it can
return a verb word which is substituted for what the player actually typed. Here is one
way the ‘Advent’ room-naming might work. Suppose that every room has been given
a property called go_verb listing the words which refer to it, so for instance the well
house might be defined along these lines:

AboveGround Inside_Building "Inside Building"
with description

"You are inside a building, a well house for a
large spring.",

go_verb ’well’ ’house’ ’inside’ ’building’,
...

The UnknownVerb routine then looks through the possible compass directions for
already-visited rooms, checking against words stored in this new property:

Global go_verb_direction;
[UnknownVerb word room direction adjacent;
room = real_location;
objectloop (direction in compass) {

adjacent = room.(direction.door_dir);
if (adjacent ofclass Object && adjacent has visited

&& adjacent provides go_verb
&& WordInProperty(word, adjacent, go_verb)) {

go_verb_direction = direction;
return ’go.verb’;

}
}
if (room provides go_verb

&& WordInProperty(word, room, go_verb)) {
go_verb_direction = "You’re already there!";
return ’go.verb’;

}
objectloop (room provides go_verb && room has visited

&& WordInProperty(word, room, go_verb)) {
go_verb_direction = "You can’t get there from here!";
return ’go.verb’;

}

§

objectloop (room provides go_verb && room hasnt visited
&& WordInProperty(word, room, go_verb)) {

go_verb_direction = "But you don’t know the way there!";
return ’go.verb’;

}
rfalse;

];

When successful, this routine stores either a compass direction (an object belonging to
the compass) in the variable go_verb_direction, or else a string to print. (Note that
an UnknownVerb routine shouldn’t print anything itself, as this might be inappropriate
in view of subsequent parsing, or if the actor isn’t the player.) The routine then tells the
parser to treat the verb as if it were ’go.verb’, and as this doesn’t exist yet, we must
define it:

[Go_VerbSub;
if (go_verb_direction ofclass String)

print_ret (string) go_verb_direction;
<<Go go_verb_direction>>;

];
Verb ’go.verb’ * -> Go_Verb;

•44EXERCISE 82
A minor deficiency with the above system is that the parser may print out strange
responses like ‘‘I only understood you as far as wanting to go.verb.’’ if the player types
something odd like ‘‘bedquilt the nugget’’. How can we ensure that the parser will
always say something like ‘‘I only understood you as far as wanting to go to Bedquilt.’’?

•REFERENCES
‘Advent’ makes a string of simple Verb definitions; ‘Alice Through the Looking-
Glass’ uses Extend a little. •‘Balances’ has a large extra grammar and also uses
the UnknownVerb and PrintVerb entry points. •Irene Callaci’s "AskTellOrder.h"
library extension file makes an elegant use of BeforeParsing to convert commands in
the form ‘‘ask mr darcy to dance’’ or ‘‘tell jack to go north’’ to Inform’s preferred form
‘‘mr darcy, dance’’ and ‘‘jack, go north’’.

§31 Tokens of grammar

The complete list of grammar tokens is given in the table be-
low. These tokens are all described in this section except for
scope = 〈Routine〉 , which is postponed to the next.

’〈word〉’ that literal word only

noun any object in scope

held object held by the actor

multi one or more objects in scope

multiheld one or more held objects

multiexcept one or more in scope, except the other object

multiinside one or more in scope, inside the other object

〈attribute〉 any object in scope which has the attribute

creature an object in scope which is animate

noun = 〈Routine〉 any object in scope passing the given test

scope = 〈Routine〉 an object in this definition of scope

number a number only

〈Routine〉 any text accepted by the given routine

topic any text at all

To recap, the parser goes through a line of grammar tokens trying to match
each against some text from the player’s input. Each token that matches must
produce one of the following five results:

(a) a single object;
(b) a ‘‘multiple object’’, that is, a set of objects;
(c) a number;
(d) a ‘‘consultation topic’’, that is, a collection of words left unparsed to be

looked through later;
(e) no information at all.

Ordinarily, a single line, though it may contain many tokens, can produce at
most two substantial results ((a) to (d)), at most one of which can be multiple

§

(b). (See the exercises below if this is a problem.) For instance, suppose the
text ‘‘green apple on the table’’ is parsed against the grammar line:

* multi ’on’ noun -> Insert

The multi token matches ‘‘green apple’’ (result: a single object, since
although multi can match a multiple object, it doesn’t have to), ’on’
matches ‘‘on’’ (result: nothing) and the second noun token matches ‘‘the
table’’ (result: a single object again). There are two substantial results, both
objects, so the action that comes out is <Insert apple table>. If the text
had been ‘‘all the fruit on the table’’, the multi token might have resulted in
a list: perhaps of an apple, an orange and a pear. The parser would then have
generated and run through three actions in turn: <Insert apple table>, then
<Insert orange table> and finally <Insert pear table>, printing out the
name of each item and a colon before running the action:

>put all the fruit on the table
Cox’s pippin: Done.
orange: Done.
Conference pear: Done.

The library’s routine InsertSub, which actually handles the action, only deals
with single objects at a time, and in each case it printed ‘‘Done.’’

· · · · ·

’〈word〉’ This matches only the literal word given, sometimes called a
preposition because it usually is one, and produces no resulting information.
(There can therefore be as many or as few of them on a grammar line as
desired.) It often happens that several prepositions really mean the same thing
for a given verb: for instance ‘‘in’’, ‘‘into’’ and ‘‘inside’’ are often synonymous.
As a convenient shorthand, then, you can write a series of prepositions (only)
with slashes / in between, to mean ‘‘one of these words’’. For example:

* noun ’in’/’into’/’inside’ noun -> Insert

noun Matches any single object ‘‘in scope’’, a term defined in the next
section and which roughly means ‘‘visible to the player at the moment’’.

held Matches any single object which is an immediate possession of the
actor. (Thus, if a key is inside a box being carried by the actor, the box
might match but the key cannot.) This is convenient for two reasons. Firstly,

§

many actions, such as Eat or Wear, only sensibly apply to things being held.
Secondly, suppose we have grammar

Verb ’eat’ * held -> Eat;

and the player types ‘‘eat the banana’’ while the banana is, say, in plain view
on a shelf. It would be petty of the game to refuse on the grounds that the
banana is not being held. So the parser will generate a Take action for the
banana and then, if the Take action succeeds, an Eat action. Notice that the
parser does not just pick up the object, but issues an action in the proper way –
so if the banana had rules making it too slippery to pick up, it won’t be picked
up. This is called ‘‘implicit taking’’, and happens only for the player, not for
other actors.

multi Matches one or more objects in scope. The multi- tokens
indicate that a list of one or more objects can go here. The parser works out
all the things the player has asked for, sorting out plural nouns and words like
‘‘except" in the process. For instance, ‘‘all the apples’’ and ‘‘the duck and the
drake’’ could match a multi token but not a noun token.

multiexcept Matches one or more objects in scope, except that it does
not match the other single object parsed in the same grammar line. This is
provided to make commands like ‘‘put everything in the rucksack’’ come out
right: the ‘‘everything’’ is matched by all of the player’s possessions except the
rucksack, which stops the parser from generating an action to put the rucksack
inside itself.

multiinside Similarly, this matches anything inside the other single
object parsed on the same grammar line, which is good for parsing commands
like ‘‘remove everything from the cupboard’’.

〈attribute〉 Matches any object in scope which has the given attribute.
This is useful for sorting out actions according to context, and perhaps the
ultimate example might be an old-fashioned ‘‘use’’ verb:

Verb ’use’ ’employ’ ’utilise’
* edible -> Eat
* clothing -> Wear
...
* enterable -> Enter;

§

creature Matches any object in scope which behaves as if living. This
normally means having animate: but, as an exceptional rule, if the action on
the grammar line is Ask, Answer, Tell or AskFor then having talkable is also
acceptable.

noun = 〈Routine〉 ‘‘Any single object in scope satisfying some condi-
tion’’. When determining whether an object passes this test, the parser sets
the variable noun to the object in question and calls the routine. If it returns
true, the parser accepts the object, and otherwise it rejects it. For example,
the following should only apply to animals kept in a cage:

[CagedCreature;
if (noun in wicker_cage) rtrue; rfalse;

];
Verb ’free’ ’release’

* noun=CagedCreature -> FreeAnimal;

So that only nouns which pass the CagedCreature test are allowed. The
CagedCreature routine can appear anywhere in the source code, though it’s
tidier to keep it nearby.

scope = 〈Routine〉 An even more powerful token, which means ‘‘an
object in scope’’ where scope is redefined specially. You can also choose
whether or not it can accept a multiple object. See §32.

number Matches any decimal number from 0 upwards (though it rounds
off large numbers to 10,000), and also matches the numbers ‘‘one’’ to ‘‘twenty’’
written in English. For example:

Verb ’type’ * number -> TypeNum;

causes actions like <Typenum 504> when the player types ‘‘type 504’’. Note
that noun is set to 504, not to an object. (While inp1 is set to 1, indicating
that this ‘‘first input’’ is intended as a number: if the noun had been the object
which happened to have number 504, then inp1 would have been set to this
object, the same as noun.) If you need more exact number parsing, without
rounding off, and including negative numbers, see the exercise below.

§

•EXERCISE 83
Some games, such as David M. Baggett’s game ‘The Legend Lives!’ produce footnotes
every now and then. Arrange matters so that these are numbered [1], [2] and so on in
order of appearance, to be read by the player when ‘‘footnote 1’’ is typed.

4 The entry point ParseNumber allows you to provide your own number-parsing
routine, which opens up many sneaky possibilities – Roman numerals, coordinates like
‘‘J4’’, very long telephone numbers and so on. This takes the form

[ParseNumber buffer length;
...returning false if no match is made, or the number otherwise...

];

and examines the supposed ‘number’ held at the byte address buffer, a row of
characters of the given length. If you provide a ParseNumber routine but return false
from it, then the parser falls back on its usual number-parsing mechanism to see if that
does any better.

44Note that ParseNumber can’t return 0 to mean the number zero, because 0 is the
same as false. Probably ‘‘zero’’ won’t be needed too often, but if it is you can always
return some value like 1000 and code the verb in question to understand this as 0.
(Sorry: this was a poor design decision made too long ago to change now.)

topic This token matches as much text as possible, regardless of what it
says, producing no result. As much text as possible means ‘‘until the end of the
typing, or, if the next token is a preposition, until that preposition is reached’’.
The only way this can fail is if it finds no text at all. Otherwise, the variable
consult_from is set to the number of the first word of the matched text and
consult_words to the number of words. See §16 and §18 for examples of
topics being used.

〈Routine〉 The most flexible token is simply the name of a ‘‘general
parsing routine’’. As the name suggests, it is a routine to do some parsing
which can have any outcome you choose, and many of the interesting things
you can do with the parser involve writing one. A general parsing routine looks
at the word stream using NextWord and wn (see §28) to make its decisions, and
should return one of the following. Note that the values beginning GPR_ are
constants defined by the library.

GPR_FAIL if there is no match;
GPR_MULTIPLE if the result is a multiple object;
GPR_NUMBER if the result is a number;
GPR_PREPOSITION if there is a match but no result;

§

GPR_REPARSE to reparse the whole command from scratch; or
O if the result is a single object O.

On an unsuccessful match, returning GPR_FAIL, it doesn’t matter what the
final value of wn is. On a successful match it should be left pointing to the next
thing after what the routine understood. Since NextWord moves wn on by one
each time it is called, this happens automatically unless the routine has read
too far. For example:

[OnAtorIn;
if (NextWord() == ’on’ or ’at’ or ’in’) return GPR_PREPOSITION;
return GPR_FAIL;

];

duplicates the effect of ’on’/’at’/’in’ , that is, it makes a token which
accepts any of the words ‘‘on", ‘‘at" or ‘‘in" as prepositions. Similarly,

[Anything;
while (NextWordStopped() ~= -1) ; return GPR_PREPOSITION;

];

accepts the entire rest of the line (even an empty text, if there are no more
words on the line), ignoring it. NextWordStopped is a form of NextWord which
returns the special value −1 once the original word stream has run out.

If you return GPR_NUMBER, the number which you want to be the result
should be put into the library’s variable parsed_number.

If you return GPR_MULTIPLE, place your chosen objects in the table
multiple_object: that is, place the number of objects in multiple_object-
->0 and the objects themselves in -->1, . . .

The value GPR_REPARSE should only be returned if you have actually
altered the text you were supposed to be parsing. This is a feature used
internally by the parser when it asks ‘‘Which do you mean . . .?’’ questions, and
you can use it too, but be wary of loops in which the parser eternally changes
and reparses the same text.

· · · · ·

4 To parse a token, the parser uses a routine called ParseToken. This behaves
almost exactly like a general parsing routine, and returns the same range of values. For
instance,

ParseToken(ELEMENTARY_TT, NUMBER_TOKEN)

§

parses exactly as number does: similarly for NOUN_TOKEN, HELD_TOKEN, MULTI_TOKEN,
MULTIHELD_TOKEN, MULTIEXCEPT_TOKEN, MULTIINSIDE_TOKEN and CREATURE_TOKEN.
The call

ParseToken(SCOPE_TT, MyRoutine)

does what scope=MyRoutine does. In fact ParseToken can parse any kind of token,
but these are the only cases which are both useful enough to mention and safe enough
to use. It means you can conveniently write a token which matches, say, either the word
‘‘kit’’ or any named set of items in scope:

[KitOrStuff; if (NextWord() == ’kit’) return GPR_PREPOSITION;
wn--; return ParseToken(ELEMENTARY_TT, MULTI_TOKEN);

];

· · · · ·

•EXERCISE 84
Write a token to detect small numbers in French, ‘‘un’’ to ‘‘cinq’’.

•EXERCISE 85
Write a token called Team, which matches only against the word ‘‘team’’ and results in
a multiple object containing each member of a team of adventurers in a game.

•4EXERCISE 86
Write a token to detect non-negative floating-point numbers like ‘‘21’’, ‘‘5.4623’’, ‘‘two
point oh eight’’ or ‘‘0.01’’, rounding off to two decimal places.

•4EXERCISE 87
Write a token to match a phone number, of any length from 1 to 30 digits, possibly
broken up with spaces or hyphens (such as ‘‘01245 666 737’’ or ‘‘123-4567’’).

•44EXERCISE 88
(Adapted from code in "timewait.h": see the references below.) Write a token to
match any description of a time of day, such as ‘‘quarter past five’’, ‘‘12:13 pm’’,
‘‘14:03’’, ‘‘six fifteen’’ or ‘‘seven o’clock’’.

•4EXERCISE 89
Code a spaceship control panel with five sliding controls, each set to a numerical value,
so that the game looks like:

§

>look
Machine Room
There is a control panel here, with five slides, each of which can be set to a
numerical value.
>push slide one to 5
You set slide one to the value 5.
>examine the first slide
Slide one currently stands at 5.
>set four to six
You set slide four to the value 6.

•4EXERCISE 90
Write a general parsing routine accepting any amount of text, including spaces, full
stops and commas, between double-quotes as a single token.

•4EXERCISE 91
On the face of it, the parser only allows two parameters to an action, noun and second.
Write a general parsing routine to accept a third. (This is easier than it looks: see the
specification of the NounDomain library routine in §A3.)

•EXERCISE 92
Write a token to match any legal Inform decimal, binary or hexadecimal constant (such
as -321, $4a7 or $$1011001), producing the correct numerical value in all cases, while
not matching any number which overflows or underflows the legal Inform range of
−32, 768 to 32,767.

•EXERCISE 93
Add the ability to match the names of the built-in Inform constants true, false,
nothing and NULL.

•EXERCISE 94
Now add the ability to match character constants like ’7’, producing the correct
character value (in this case 55, the ZSCII value for the character ‘7’).

•44EXERCISE 95
Next add the ability to match the names of attributes, such as edible, or negated
attributes with a tilde in front, such as ~edible. An ordinary attribute should parse to
its number, a negated one should parse to its number plus 100. (Hint: the library has a
printing rule called DebugAttribute which prints the name of an attribute.)

•44EXERCISE 96
And now add the names of properties.

§

•REFERENCES
Once upon a time, Andrew Clover wrote a neat library extension called "timewait.h"
for parsing times of day, and allowing commands such as ‘‘wait until quarter to three’’.
L. Ross Raszewski, Nicholas Daley and Kevin Forchione each tinkered with and
modernised this, so that there are now also "waittime.h" and "timesys.h". Each has
its merits.

§32 Scope and what you can see

He cannot see beyond his own nose. Even the fingers he out-
stretches from it to the world are (as I shall suggest) often invisible
to him.

— Max Beerbohm (1872–1956), of George Bernard Shaw

Time to say what ‘‘in scope’’ means. This definition is one of the
most important rules of play, because it decides what the player
is allowed to refer to. You can investigate this experimentally by
compiling any game with the debugging suite of verbs included (see

§7) and typing ‘‘scope’’ in interesting places. ‘‘In scope’’ roughly means ‘‘the
compass directions, what you’re carrying and what you can see’’. It exactly
means this:

(1) the compass directions;
(2) the player’s immediate possessions;
(3) if there is light, then the contents of the player’s visibility ceiling (see §21 for

definition, but roughly speaking the outermost object containing the player which
remains visible, which is usually the player’s location);

(4) if there is darkness, then the contents of the library’s object thedark (by default
there are no such contents, but some designers have been known to move objects
into thedark: see ‘Ruins’);

(5) if the player is inside a container, then that container;
(6) if O is in scope and is see-through (see §21), then the contents of O;
(7) if O is in scope, then any object which it ‘‘adds to scope’’ (see below).

with the proviso that the InScope entry point (see below) can add to or replace
these rules, if you write one.

It’s significant that rule (3) doesn’t just say ‘‘whatever is in the current
location’’. For instance, if the player is in a closed cupboard in the Stores
Room, then rule (3) means that the contents of the cupboard are in scope, but
other items in the Stores Room are not.

Even in darkness the player’s possessions are in scope, so the player can
still turn on a lamp being carried. On the other hand, a player who puts the
lamp on the ground and turns it off then loses the ability to turn it back on
again, because it is out of scope. This can be changed; see below.

4 Compass directions make sense as things as well as directions, and they respond
to names like ‘‘the south wall’’ and ‘‘the floor’’ as well as ‘‘south’’ and ‘‘down’’.

§

4 The concealed attribute only hides objects from room descriptions, and doesn’t
remove them from scope. If you want things to be unreferrable-to, put them somewhere
else!

4 The small print: 1. For ‘‘player’’, read ‘‘actor’’. Thus ‘‘dwarf, drop sword’’ will
be accepted if the dwarf can see the sword even if the player can’t. 2. Scope varies
depending on the token being parsed: for the multi- tokens, compass directions are
not in scope; for multiexcept the other object isn’t in scope; for multiinside only
the contents of the other object are in scope.

· · · · ·

Two library routines enable you to see what’s in scope and what isn’t. The first,
TestScope(obj, actor), simply returns true or false according to whether
or not obj is in scope. The second is LoopOverScope(routine, actor) and
calls the given routine for each object in scope. In each case the actor given
is optional, and if it’s omitted, scope is worked out for the player as usual.

•EXERCISE 97
Implement the debugging suite’s ‘‘scope’’ verb, which lists all the objects currently in
scope.

•EXERCISE 98
Write a ‘‘megalook’’ verb, which looks around and examines everything in scope except
the walls, floor and ceiling.

· · · · ·

Formally, scope determines what you can talk about, which usually means
what you can see or hear. But what can you touch? Suppose a locked chest
is inside a sealed glass cabinet. The Inform parser will allow the command
‘‘unlock chest with key’’ and generate the appropriate action, <Unlock chest
key>, because the chest is in scope, so the command at least makes sense.

But it’s impossible to carry out, because the player can’t reach through
the solid glass. So the library’s routine for handling the Unlock action needs to
enforce this. The library does this using a stricter rule called ‘‘touchability’’.
The rule is that you can touch anything in scope unless there’s a closed
container between you and it. This applies either if you’re in the container,
or if it is.

Some purely visual actions, such as Examine or LookUnder, don’t require
touchability. But most actions are tactile, and so are many actions created by
designers. If you want to make your own action routines enforce touchability,
you can call the library routine ObjectIsUntouchable(obj). This either
returns false and prints nothing if there’s no problem in touching obj, or

§

returns true and prints a suitable message, such as ‘‘The solid glass cabinet is
in the way.’’ Thus, the first line of many of the library’s action routines is:

if (ObjectIsUntouchable(noun)) return;

You can also call ObjectIsUntouchable(obj, true) to simply return true
or false, printing nothing, if you’d rather provide your own failure message.

· · · · ·
The rest of this section is about how to change the scope rules. As usual with
Inform, you can change them globally, but it’s more efficient and safer to work
locally. To take a typical example: how do we allow the player to ask questions
like the traditional ‘‘what is a grue’’? The ‘‘grue’’ part ought to be parsed as
if it were a noun, so that we could distinguish between, say, a ‘‘garden grue’’
and a ‘‘wild grue’’. So it isn’t good enough to look only at a single word. Here
is one solution:

[QuerySub; noun.description(); return;
];
[QueryTopic;
switch (scope_stage) {

1: rfalse;
2: ScopeWithin(questions); rtrue;
3: "At the moment, even the simplest questions confuse you.";

}
];
Object questions;

where the actual questions at any time are the current children of the questions
object, like so:

Object -> "long count"
with name ’long’ ’count’,

description "The Long Count is the great Mayan cycle of
time, which began in 3114 BC and will finish with
the world’s end in 2012 AD.";

(which might be helpful in ‘Ruins’) and we also have a grammar line:

Verb ’what’ * ’is’/’was’ scope=QueryTopic -> Query;

The individual questions have short names so that the parser might be able to
say ‘‘Which do you mean, the long count or the short count?’’ if the player
asked ‘‘what is the count’’. (As it stands this won’t recognise ‘‘what is the
count?’’. Conventionally players are supposed not to type question marks or
quotes in their commands. To allow this one could always add ’count?’ as
one of the names above.)

§

· · · · ·

Here is the specification. When the parser reaches scope=Whatever , it calls
the Whatever routine with the variable scope_stage set to 1. The routine
should return true if it is prepared to allow multiple objects to be accepted
here, and false otherwise. (In the example, as we don’t want ‘‘what is
everything’’ to list all the questions and answers in the game, we return false.)

A little later the parser calls Whatever again with scope_stage now set to
2. Whatever is then obliged to tell the parser which objects are to be in scope.
It can call two parser routines to do this:

ScopeWithin(obj)

which puts everything inside obj, but not obj itself, into scope, and then works
through rules (6) and (7) above, so that it may continue to add the contents of
the contents, and so on; and

PlaceInScope(obj)

which puts just obj into scope. It is perfectly legal to declare something in
scope that ‘‘would have been in scope anyway’’: or something which is in a
different room altogether from the actor concerned, say at the other end of a
telephone line. The scope routine Whatever should then return false if the
nominated items are additional to the usual scope, or true if they are the only
items in scope. (In the example, QueryTopic returns true because it wants
the only items in scope to be its question topics, not the usual miscellany near
the player.)

This is fine if the token is correctly parsed. If not, the parser may choose
to ask the token routine to print a suitable error message, by calling Whatever
with scope_stage set to 3. (In the example, this will happen if the player types
‘‘what is the lgon count’’, and QueryTopic replies ‘‘At the moment, even the
simplest questions confuse you.’’, because it comes from a faintly dream-like
game called ‘Balances’.)

•EXERCISE 99
Write a token which puts everything in scope, so that you could have a debugging
‘‘purloin’’ which could take anything, regardless of where it was and the rules applying
to it.

· · · · ·

§

4 The global scope rules can be tampered with by providing an entry point routine
called InScope(actor), where actor is the actor whose scope is worked out. In effect,
this defines the ‘‘ordinary’’ scope by making calls to ScopeWithin and PlaceInScope,
then returning true or false, exactly as if it were a scope token at stage 2. For instance,
here as promised is how to change the rule that ‘‘things you’ve just dropped disappear
in the dark’’:

[InScope person i;
if (person == player && location == thedark)

objectloop (i in parent(player))
if (i has moved) PlaceInScope(i);

rfalse;
];

With this routine added, objects near the player in a dark room are in scope only if
they have moved (that is, have been held by the player in the past), and even then are
in scope only to the player, not to anyone else.

4 The token scope=〈Routine〉 takes precedence over InScope, which will only be
reached if the routine returns false to signify ‘‘carry on’’.

44 There are seven reasons why InScope might be being called; the scope_reason
variable is set to the current one:

PARSING_REASON The usual reason. Note that action_to_be holds NULL in
the early stages (before the verb has been decided) and later
on the action which would result from a successful match.

TALKING_REASON Working out which objects are in scope for being spoken to
(see the end of §18 for exercises using this).

EACHTURN_REASON When running each_turn routines for anything nearby, at
the end of each turn.

REACT_BEFORE_REASON When running react_before.
REACT_AFTER_REASON When running react_after.
TESTSCOPE_REASON When performing a TestScope.
LOOPOVERSCOPE_REASON When performing a LoopOverScope.

•44EXERCISE 100
Construct a long room divided by a glass window. Room descriptions on either side
should describe what’s in view on the other; the window should be possible to look
through; objects on the far side should be in scope, but not manipulable.

•44EXERCISE 101
Code the following puzzle. In an initially dark room there is a light switch. Provided
you’ve seen the switch at some time in the past, you can turn it on and off – but before
you’ve ever seen it, you can’t. Inside the room is nothing you can see, but you can hear
the distinctive sound of a dwarf breathing. If you tell this dwarf to turn the light on, he
will.

§

· · · · ·

Each object has the ability to drag other objects into scope whenever it is
in scope. This is especially useful for giving objects component parts: e.g.,
giving a washing-machine a temperature dial. (The dial can’t be a child object
because that would throw it in with the clothes: and it ought to be attached
to the machine in case the machine is moved from place to place.) For this
purpose, the property add_to_scope may contain a list of objects to add.

4 Alternatively, it may contain a routine. This routine can then call AddToScope(x)
to add any object x to scope. It may not, however, call ScopeWithin or any other
scoping routines.

44 Scope addition does not occur for an object moved into scope by an explicit call
to PlaceInScope, since this must allow complete freedom in scope selections. But it
does happen when objects are moved in scope by calls to ScopeWithin(domain).

•EXERCISE 102
(From the tiny example game ‘A Nasal Twinge’.) Give the player a nose, which is
always in scope and can be held, reducing the player’s carrying capacity.

•EXERCISE 103
(Likewise.) Create a portable sterilising machine, with a ‘‘go’’ button, a top which
things can be put on and an inside to hold objects for sterilisation. Thus it is a container,
a supporter and a possessor of sub-objects all at once.

•44EXERCISE 104
Create a red sticky label which the player can affix to any object in the game. (Hint:
use InScope, not add_to_scope.)

•REFERENCES
‘Balances’ uses scope = 〈routine〉 tokens for legible spells and memorised spells.
•Jesse Burneko’s library extension "Info.h" is a helpful model to follow: using a
simple scope token, it allows for ‘‘consult’’ and ‘‘ask’’ commands to access topics
which are provided as objects. •See also the exercises at the end of §18 for further
scope trickery. •Similarly, L. Ross Raszewski’s "whatis.h" (adapted to Inform 6 by
Andrew C. Murie) and David Cornelson’s "whowhat.h" field questions such as ‘‘what
is. . .’’ and ‘‘who is. . .’’.

§33 Helping the parser out of trouble

Once you begin programming the parser on a large scale, you soon
reach the point where the parser’s ordinary error messages no longer
appear sensible. The ParserError entry point can change the rules
even at this last hurdle: it takes one argument, the error type, and

should return true to tell the parser to shut up, because a better error message
has already been printed, or false, to tell the parser to print its usual message.
The error types are defined as constants:

STUCK_PE I didn’t understand that sentence.
UPTO_PE I only understood you as far as. . .
NUMBER_PE I didn’t understand that number.
CANTSEE_PE You can’t see any such thing.
TOOLIT_PE You seem to have said too little!
NOTHELD_PE You aren’t holding that!
MULTI_PE You can’t use multiple objects with that verb.
MMULTI_PE You can only use multiple objects once on a line.
VAGUE_PE I’m not sure what ‘it’ refers to.
EXCEPT_PE You excepted something not included anyway!
ANIMA_PE You can only do that to something animate.
VERB_PE That’s not a verb I recognise.
SCENERY_PE That’s not something you need to refer to. . .
ITGONE_PE You can’t see ‘it’ (the whatever) at the moment.
JUNKAFTER_PE I didn’t understand the way that finished.
TOOFEW_PE Only five of those are available.
NOTHING_PE Nothing to do!
ASKSCOPE_PE whatever the scope routine prints

Each unsuccessful grammar line ends in one of these conditions. By the time
the parser wants to print an error, every one of the grammar lines in a verb will
have failed. The error message chosen it prints is the most ‘‘interesting’’ one:
meaning, lowest down this list.

If a general parsing routine you have written returns GPR_FAIL, then
the grammar line containing it normally ends in plain STUCK_PE, the least
interesting of all errors (unless you did something like calling the library’s
ParseToken routine before giving up, which might have set a more interesting
error like CANTSEE_PE). But you can choose to create a new error and put it in
the parser’s variable etype, as in the following example:

[Degrees d;
d = TryNumber(wn++);

§

if (d == -1000) return GPR_FAIL;
if (d <= 360) { parsed_number = d; return GPR_NUMBER; }
etype = "There are only 360 degrees in a circle.";
return GPR_FAIL;

];

This parses a number of degrees between 0 and 360. Although etype normally
only holds values like VERB_PE, which are numbers lower than 100, here we’ve
set it equal to a string. As this will be a value that the parser doesn’t recognise,
we need to write a ParserError routine that will take care of it, by reacting to
a string in the obvious way – printing it out.

[ParserError error_type;
if (error_type ofclass String) print_ret (string) error_type;
rfalse;

];

This will result in conversation like so:
>steer down
I didn’t understand that sentence.
>steer 385
There are only 360 degrees in a circle.

In the first case, Degrees failed without setting any special error message on
finding that the second word wasn’t a number; in the second case it gave the
new, specific error message.

· · · · ·
The VAGUE_PE and ITGONE_PE errors apply to all pronouns (in English, ‘‘it’’,
‘‘him’’, ‘‘her’’ and ‘‘them’’). The variable vague_word contains the dictionary
address of whichever pronoun is involved (’it’, ’him’ and so on).

You can find out the current setting of a pronoun using the library’s
PronounValue routine: for instance, PronounValue(’it’) gives the object
which ‘‘it’’ currently refers to, possibly nothing. Similarly SetPronoun(’it’,
magic_ruby) would set ‘‘it’’ to mean the magic ruby object. You might want
this because, when something like a magic ruby suddenly appears in the
middle of a turn, players will habitually call it ‘‘it’’. A better way to adjust
the pronouns is to call PronounNotice(magic_ruby), which sets whatever
pronouns are appropriate. That is, it works out if the object is a thing or
a person, of what number and gender, which pronouns apply to it in the
parser’s current language, and so on. In code predating Inform 6.1 you may
see variables called itobj, himobj and herobj holding the English pronoun
values: these still work properly, but please use the modern system in new
games.

§

· · · · ·

4 The Inform parser resolves ambiguous object names with a pragmatic algorithm
which has evolved over the years (see below). Experience also shows that no two
people ever quite agree on what the parser should ‘‘naturally’’ do. Designers have an
opportunity to influence this by providing an entry point routine called ChooseObjects:

ChooseObjects(obj, code)

is called in two circumstances. If code is false or true, the parser is considering
including the given obj in an ‘‘all’’: false means the parser has decided against, true
means it has decided in favour. The routine should reply

0 to accept the parser’s decision;
1 to force the object to be included; or
2 to force the object to be excluded.

It may want to decide using verb_word (the variable storing the current verb word, e.g.,
’take’) and action_to_be, which is the action which would happen if the current line
of grammar were successfully matched.

The other circumstance is when code is 2. This means the parser is choosing
between a list of items which made equally good matches against some text, and would
like a hint. ChooseObjects should then return a number from 0 to 9 to give obj a score
for how appropriate it is.

For instance, some designers would prefer ‘‘take all’’ not to attempt to take
scenery objects (which Inform, and the parsers in most of the Infocom games, will
do). Let us code this, and also teach the parser that edible things are more likely to be
eaten than inedible ones:

[ChooseObjects obj code;
if (code < 2) { if (obj has scenery) return 2; rfalse; }
if (action_to_be == ##Eat && obj has edible) return 3;
if (obj hasnt scenery) return 2;
return 1;

];

Scenery is now excluded from ‘‘all’’ lists; and is further penalised in that non-scenery
objects are always preferred over scenery, all else being equal. Most objects score 2 but
edible things in the context of eating score 3, so ‘‘eat black’’ will now always choose a
Black Forest gateau in preference to a black rod with a rusty iron star on the end.

•4EXERCISE 105
Allow ‘‘lock’’ and ‘‘unlock’’ to infer their second objects without being told, if there’s
an obvious choice (because the player’s only carrying one key), but to issue a disam-
biguation question otherwise. (Use Extend, not ChooseObjects.)

§

•4EXERCISE 106
Joyce Haslam’s Inform edition of the classic Acornsoft game ‘Gateway to Karos’
requires a class called FaintlyLitRoom for rooms so dimly illuminated that ‘‘take all’’
is impossible. How might this work?

· · · · ·

44 Suppose we have a set of objects which have all matched equally well against the
textual input, so that some knowledge of the game world is needed to resolve which
of the objects – possibly only one, possibly more – is or are intended. Deciding this is
called ‘‘disambiguation’’, and here in full are the rules used by library 6/10 to do it.
The reader is cautioned that after six years, these rules are still evolving.

(1) Call an object ‘‘good’’ according to a rule depending on what kind of token is
being matched:

held Good if its parent is the actor.
multiheld Good if its parent is the actor.
multiexcept Good if not also the second object, if that’s known yet.
multiinside Good if not inside the second object, if that’s known yet.
creature Good if animate, or if the proposed action is Ask,

Answer, Tell or AskFor and the object is talkable.
other tokens All objects are good.

If only a single object is good, this is immediately chosen.

(2) If the token is creature and no objects are good, fail the token altogether, as no
choice can make sense.

(3) Objects which don’t fit ‘‘descriptors’’ used by the player are removed:
if ‘‘my’’, an object whose parent isn’t the actor is discarded;
if ‘‘that’’, an object whose parent isn’t the actor’s location is discarded;
if ‘‘lit’’, an object which hasn’t light is discarded;
if ‘‘unlit’’, an object which has light is discarded;
if ‘‘his’’ or some similar possessive pronoun, an object not owned by the
person implied is discarded.

Thus ‘‘his lit torches’’ will invoke two of these rules at once.

(4) If there are no objects left, fail the token, as no choice can make sense.

(5) It is now certain that the token will not fail. The remaining objects are assigned a
score as follows:

(i) 1000×C points, where C is the return value of ChooseObjects(object,2).
(0 ≤ C ≤ 9. If the designer doesn’t provide this entry point at all then
C = 0.)

(ii) 500 points for being ‘‘good’’ (see (1) above).
(iii) 100 points for not having concealed.

§

(iv) P points depending on the object’s position:

P =

A if object belongs to the actor,
L if object belongs to the actor’s visibility ceiling,
20 if object belongs anywhere else except the compass,
0 if object belongs to the compass.

(Recall that ‘‘visibility ceiling’’ usually means ‘‘location’’ and that the objects
belonging to the compass are exactly the compass directions.) The values A
and L depend on the token being parsed:

{

A = 60 L = 40 for held or multiheld tokens,
A = 40 L = 60 otherwise.

(v) 10 points for not having scenery.
(vi) 5 points for not being the actor object.
(vii) 1 point if the object’s gender, number and animation (GNA) matches one

possibility implied by some pronoun typed by the player: for instance ‘‘them’’
in English implying plural, or ‘‘le’’ in French implying masculine singular.

(6d) In ‘‘definite mode’’, such as if the player has typed a definite article like ‘‘the’’, if
any single object has highest score, choose that object.

(7ip) The following rule applies only in indefinite mode and provided the player has
typed something definitely implying a plural, such as the words ‘‘all’’ or ‘‘three’’
or ‘‘coins’’. Here the parser already has a target number of objects to choose:
for instance 3 for ‘‘three’’, or the special value of 100, meaning ‘‘an unlimited
number’’, for ‘‘all’’ or ‘‘coins’’.
Go through the list of objects in ‘‘best guess’’ order (see below). Mark each as
‘‘accept’’ unless:

(i) it has worn or concealed;
(ii) or the action is Take or Remove and the object is held by the actor;
(iii) or the token is multiheld or multiexcept and the object isn’t held by

the actor;
(iv) or the target number is ‘‘unlimited’’ and S/20 (rounded down to the nearest

integer) has fallen below its maximum value, where S is the score of the
object.

The entry point ChooseObjects(object,accept_flag) is now called and can
overrule the ‘‘accept’’/‘‘reject’’ decision either way. We keep accepting objects like
this until the target is reached, or proves impossible to reach.

(8) The objects are now grouped so that any set of indistinguishable objects forms a
single group. ‘‘Indistinguishable’’ means that no further text typed by the player
could clarify which is meant (see §29). Note that there is no reason to suppose
that two indistinguishable objects have the same score, because they might be in
different places.

§

(9d) In definite mode, we know that there’s a tie for highest score, as otherwise a choice
would have been made at step (6d). If these highest-scoring objects belong to
more than one group, then ask the player to choose which group:

You can see a bronze coin and four gold coins here.
>get coin
Which do you mean, the bronze coin or a gold coin?
>gold

The player’s response is inserted textually into the original input and the parsing
begins again from scratch with ‘‘get gold coin’’ instead of ‘‘get coin’’.

(10) Only two possibilities remain: either (i) we are in indefinite but singular mode,
or (ii) we are in definite mode and there is a tie for highest-scoring object and
all of these equal-highest objects belong to the same group. Either way, choose
the ‘‘best guess’’ object (see below). Should this parsing attempt eventually prove
successful, print up an ‘‘inference’’ on screen, such as

>get key
(the copper key)

only if the number of groups found in (8) is more than 1.

(BG) It remains to define ‘‘best guess’’. From a set of objects, the best guess is the
highest-scoring one not yet guessed; and if several objects have equal highest
scores, it is the earliest one to have been matched by the parser. In practice this
means the one most recently taken or dropped, because the parser tries to match
against objects by traversing the object-tree, and the most recently moved object
tends to be the first in the list of children of its parent.

•REFERENCES
See ‘Balances’ for a usage of ParserError. •Infocom’s parser typically produces
error messages like ‘‘I don’t know the word ‘tarantula’.’’ when the player types a word
not in the game’s dictionary, and some designers prefer this style to Inform’s give-
nothing-away approach (Inform tries not to let the player carry out experiments to see
what is, and what is not, in the dictionary). Neil Cerutti’s "dunno.h" library extension
restores the Infocom format. •The library extension "calyx_adjectives.h", which
resolves ambiguities in parsing by placing more weight on matches with nouns than
with adjectives, works by using ChooseObjects.

