
Chapter VII: The Z-Machine

§41 Architecture and assembly

Infocom’s games of 1979–89 were written in a language called
ZIL, the Zork Implementation Language. At first sight this is
outlandishly unlike Inform, but appearances are deceptive. The
following source code describes toy boats in Kensington Park, from

a game widely considered a masterpiece: ‘Trinity’ (1986), by Brian Moriarty.

<OBJECT BOAT
(LOC ROUND-POND)
(DESC "toy boats")
(FLAGS TRYTAKE NODESC PLURAL)
(SYNONYM BOAT BOATS TOYS)
(ADJECTIVE TOY)
(ACTION BOAT-F)>

<ROUTINE BOAT-F ()
<COND (<VERB? EXAMINE WATCH>

<TELL CTHEO
" are crafted of paper and sticks. They bob freely among the "
D ,POND-BIRDS ", who can barely conceal their outrage." CR>

<RTRUE>)
(<VERB? SWIM DIVE WALK-TO FOLLOW SIT LIE-DOWN ENTER>
<DO-WALK ,P?IN>
<RTRUE>)
(<INTBL? ,PRSA ,TOUCHVERBS ,NTOUCHES>
<TELL CTHE ,BOAT " are far out of reach." CR>
<RTRUE>)
(T
<RFALSE>)>>

Inform and ZIL each have objects, with properties and attributes. They’re
called different things, true: ZIL has its dictionary words in SYNONYM and
ADJECTIVE where Inform uses name, ZIL calls attributes ‘‘flags’’ and has
NODESC where Inform would have scenery, but the similarity is striking. Both
languages have routines with a tendency to return true and false, too.

The underlying similarity is the Z-machine, which both languages make
use of. The Z-machine is an imaginary computer: created on Joel Berez’s
mother’s coffee table in Pittsburgh in 1979, it has never existed as circuitry.



§   

Instead, almost every real computer built in the 1980s and 1990s has been
taught to emulate the Z-machine, and so to run story files.

This chapter contains what the advanced Inform programmer needs, from
time to time, to know about the Z-machine. The reader who only wants to get
at fairly easy screen effects like coloured text may want to turn straight to the
references to §42, where a number of convenient library extensions are listed.

In any case this chapter is by no means the full story, which is contained
in The Z-Machine Standards Document. It seems nonetheless appropriate to
acknowledge here the work of the Z-machine’s architects: Joel Berez, Marc
Blank, P. David Lebling, Tim Anderson and others.

· · · · ·

The Z-machine as conceived in 1979 is now known as ‘‘version 1’’, and
there have been seven subsequent versions to date. Inform normally produces
version 5 story files, but this can be controlled with the -v switch: so -v6
compiles a version 6 story file, for instance. Briefly, the versions are:

Versions 1 and 2. Early draft designs by Infocom, used only in the first release
of the ‘Zork’ trilogy. Inform cannot produce them.

Version 3. The standard Infocom design, limited in various ways: to 255
objects, 32 attributes, at most 4 entries in a property array, at most 3
arguments in a routine call and a story file at most 128K in size. Inform
can produce version 3 files but this is not recommended and some advanced
features of the language, such as message-sending, will not work.

Version 4. A partial upgrade, now seldom used.

Version 5. The advanced Infocom design and the one normally used by
Inform. Limits are raised to 65,535 objects, 48 attributes, 32 entries in a
property array, 7 arguments in a routine call and a story file at most 256K in
size.

Version 6. Similar, though not identical, in architecture to Version 5, but
offering support for pictures. Inform will compile to this, but there are two
further obstructions: you need a way to package up the sounds and images to
go with the story file (see §43), and then players need an interpreter able to
make use of them.

Version 7. An intermediate version which has never proved useful, and whose
use is now deprecated.

Version 8. Identical to version 5 except that it allows story files up to 512K
long. Most of the largest Inform games use version 8.

· · · · ·



§   

The native language of the Z-machine is neither Inform nor ZIL, but an
intermediate-level code which we’ll call ‘‘assembly language’’. It’s tiresome to
write a program of any complexity in assembly language. For instance, here
are two equivalent pieces of Inform: first, a statement in ordinary code:

"The answer is ", 3*subtotal + 1;

Secondly, assembly language which achieves the same end:

@print "The answer is ";
@mul 3 subtotal -> x;
@add x 1 -> x;
@print_num x;
@new_line;
@rtrue;

(Here we’ve used a variable called x.) Inform allows you to mix assembly
language and ordinary Inform source code freely, but all commands in assembly
language, called ‘‘opcodes’’, are written with an @ sign in front, to distinguish
them. The values supplied to opcodes, such as 3 and subtotal, are called
‘‘operands’’. The -> arrow sign is read ‘‘store to’’ and indicates that an answer
is being stored somewhere. So, for instance, the line

@add x 1 -> x;

adds x and 1, storing the result of this addition back in x. Operands can
only be constants or variables: so you can’t write a compound expression like
my_array-->(d*4).

As can be seen above, some opcodes store values and some don’t. Another
important category are the ‘‘branch’’ opcodes, which result in execution
jumping to a different place in the source code if some condition turns out to
be true, and not otherwise. For instance:

@je x 1 ?Xisone;
@print "x isn’t equal to 1.";
.Xisone;

Here, Xisone is the name of a label, marking a point in the source code which
a branch opcode (or an Inform jump statement) might want to jump to. (A
label can’t be the last thing in a function, but if you needed this, you could
always finish with a label plus a return statement instead.) @je means ‘‘jump



§   

if equal’’, so the code tests x to see if it’s equal to 1 and jumps to Xisone if
so. Inform will only allow branches to labels in the same routine. Note that
inserting a tilde,

@je x 1 ?~Xisntone;

reverses the condition, so this opcode branches if x is not equal to 1.
The full specification of Inform’s assembly-language syntax is given in §14

of The Z-Machine Standards Document, but this will seldom if ever be needed,
because the present chapter contains everything that can’t be done more easily
without assembly language anyway.

· · · · ·
4 The rest of this section sketches the architecture of the Z-machine, which many
designers won’t need to know about. Briefly, it contains memory in three sections:
readable and writeable memory at byte addresses 0 up to S−1, read-only memory from
S up to P − 1 and inaccessible memory from P upwards. (In any story file, the Inform
expression 0-->2 gives the value of P and 0-->7 gives S.) The read-write area contains
everything that needs to change in play: variables, object properties and attributes,
arrays and certain other tables; except for the stack and the ‘‘program counter’’, its
marker as to which part of some routine it is currently running. The beginning of
the read-write area is a 64-byte ‘‘header’’. Byte 0 of this header, and so of an entire
story file, contains the version number of the Z-machine for which it is written. (The
expression 0->0 evaluates to this.)

The read-only area contains tables which the Inform parser needs to make
detailed use of but never alters: the grammar lines and the dictionary, for instance. The
‘‘inaccessible’’ area contains routines and static (that is, unalterable) strings of text.
These can be called or printed out, which is access of a sort, but you can’t write code
which will examine them one byte at a time.

In addition to local and global variables, the Z-machine contains a ‘‘stack’’, which
is accessed with the name sp for ‘‘stack pointer’’. The stack is a pile of values. Each
time sp is written to, a new value is placed on top of the pile. Each time it is read, the
value being read is taken off the pile. At the start of a routine, the stack is always empty.

There is no access to the outside world except by using certain opcodes. For
instance, @read and @read_char allow use of the keyboard, whereas @print and
@draw_picture allow use of the screen. (The screen’s image is not stored anywhere
in memory, and nor is the state of the keyboard.) Conversely, hardware can cause the
Z-machine to ‘‘interrupt’’, that is, to make a spontaneous call to a particular routine,
interrupting what it was previously working on. This happens only if the story file has
previously requested it: for example, by setting a sound effect playing and asking for a
routine to be called when it finishes; or by asking for an interrupt if thirty seconds pass
while the player is thinking what to type.



§42 Devices and opcodes

This section covers the only opcodes which designers are likely to
have occasional need of: those which drive powerful and otherwise
inaccessible features of the Z-machine’s ‘‘hardware’’, such as sound,
graphics, menus and the mouse. There’s no need to be fluent in

assembly language to use these opcodes, which work just as well if used as
incantations from a unfamiliar tongue.

•WARNING
Some of these incantations may not work well if a story file is played on
old interpreters which do not adhere to the Z-Machine Standard. Standard
interpreters are very widely available, but if seriously worried you can test in
an Initialise routine whether your game is running on a good interpreter,
as in the following code.

if (standard_interpreter == 0) {
print "This game must be played on an interpreter obeying the

Z-Machine Standard.^";
@quit;

}

The library variable standard_interpreter holds the version number of the
standard obeyed, with the upper byte holding the major and the lower byte the
minor version number, or else zero if the interpreter isn’t standard-compliant.
Thus $002 means 0.2 and $100 means 1.0. Any standard interpreter will carry
out the opcodes in this chapter correctly, or else provide fair warning that
they cannot. (For instance, an interpreter running on a palm-top personal
organiser without a loudspeaker cannot provide sound effects.) Here is how to
tell whether a standard interpreter can or can’t provide the feature you need.

Feature Versions Available if

auxiliary files 5,6,8 (true)
coloured text 5,6,8 ((0->1) & 1 ~= 0)
input streams 5,6,8 (true)
menus 6 (($10-->0) & 256 ~= 0)
mouse 5,6 (($10-->0) & 32 ~= 0)
output streams 5,6,8 (true)
pictures 6 (($10-->0) & 8 ~= 0)
sounds 5,6,8 (($10-->0) & 128 ~= 0)
throw/catch stack frames 5,6,8 (true)
timed keyboard interrupts 5,6,8 ((0->1) & 128 ~= 0)



§   

For instance, if coloured text is essential (for instance if red and black letters
have to look different because it’s a vital clue to some puzzle), you may want
to add a test like the following to your Initialise routine:

if ((0->1) & 1 == 0)
print "*** This game is best appreciated on an interpreter

capable of displaying colours, unlike the present
one. Proceed at your own risk! ***^";

· · · · ·

4 Text flows in and out of the Z-machine continuously: the player’s commands flow
in, responses flow out. Commands can come in from two different ‘‘input streams’’,
only one of which is selected at any given time: stream 0 is the keyboard and stream 1
is a file on the host computer. The stream is selected with:

@input_stream number

The Inform debugging verb ‘‘replay’’ basically does no more than switch input to
stream 1.

4 There are four output streams for text, numbered 1 to 4. These are: (1) the
screen, (2) the transcript file, (3) an array in memory and (4) a file of commands on the
host computer. These can be active in any combination, except that at all times either
stream 1 or stream 3 is active and not both. Inform uses stream 3 when the message
print_to_array is sent to a string, and streams 2 and 4 in response to commands
typed by the player: ‘‘script on’’ switches stream 2 on, ‘‘script on’’ switches it off;
‘‘recording on’’ and ‘‘off’’ switch stream 4 on and off. The relevant opcode is:

@output_stream number arr

If number is 0 this does nothing. +n switches stream n on, −n switches it off. The
arr operand is omitted except for stream 3, when it’s a table array holding the text
printed: that is, arr-->0 contains the number of characters printed and the text printed
is stored as ZSCII characters in arr->2, arr->3, . . .

4 As the designer, you cannot choose the filename of the file of commands used
by input stream 1 or output stream 4. Whoever is playing the story file will choose
this: perhaps after being prompted by the interpreter, perhaps through a configuration
setting on that interpreter.

•44EXERCISE 122
Implement an Inform version of the standard ‘C’ routine printf, taking the form

printf(format, arg1, ...)



§   

to print out the format string but with escape sequences like %d replaced by the
arguments (printed in various ways). For example,

printf("The score is %e out of %e.", score, MAX_SCORE);

should print something like ‘‘The score is five out of ten.’’

4 In Version 6 story files, only, @output_stream can take an optional third operand
when output stream 3 is being enabled. That is:

@output_stream 3 arr width

If width is positive, the text streamed into the array will be word-wrapped as if it
were on a screen width characters wide; if width is negative, then as if on a screen
-width pixels wide. The text going into arr is in the form of a sequence of lines,
each consisting of a word containing the number of characters and then the ZSCII
characters themselves in bytes. The sequence of lines finishes with a zero word. Such
an array is exactly what is printed out by the opcode @print_form arr.

· · · · ·

4 The Z-machine has two kinds of ‘‘screen model’’, or specification for what can
and can’t be done to the contents of the screen. Version 6 has an advanced graphical
model, whereas other versions have much simpler textual arrangements. Early versions
of the Z-machine are generally less capable here, so this section will document only the
Version 5 and Version 6 models. (Versions 7 and 8 have the same model as Version 5.)

The version 5 screen model. The screen is divided into an upper window, normally used
for a status line and sometimes also for quotations or menus, and a lower window, used
for ordinary text. At any given time the upper window has a height H, which is a whole
number of lines: and H can be zero, making the upper window invisible. (The story
file can vary H from time to time and many do.) When text in the upper and lower
windows occupy the same screen area, it’s the upper window text that’s visible. This
often happens when quotation boxes are displayed.

@split_window H

Splits off an upper-level window of the given number of lines H in height from the
main screen. Be warned that the upper window doesn’t scroll, so you need to make H
large enough for all the text you need to fit at once.

@set_window window

Selects which window text is to be printed into: (0) the lower one or (1) the upper
one. Printing on the upper window overlies printing on the lower, is always done in a
fixed-pitch font and does not appear in a printed transcript of the game.

@set_cursor line column



§   

Places the cursor inside the upper window, where (1, 1) is the top left character.

@buffer_mode flag

This turns on (flag==true) or off (flag==false) word-breaking for the current
window: that is, the practice of printing new-lines only at the ends of words, so that
text is neatly formatted.

@erase_window window

Blanks out window 0 (lower), window 1 (upper) or the whole screen (if window=-1).
Using fixed-pitch measurements, the screen has dimensions X characters across

by Y characters down, where X and Y are stored in bytes $21 and $20 of the header
respectively. It’s sometimes useful to know this when formatting tables:

print "My screen has ", 0->$20, " rows and ", 0->$21, " columns.^";

Be warned: it might be 80× 210 or then again it might be 7× 40. Text printing has a
given foreground and background colour at all times. The standard stock of colours is:

0 current colour 5 yellow
1 default colour 6 blue
2 black 7 magenta
3 red 8 cyan
4 green 9 white

@set_colour foreground background

If coloured text is available, this opcode sets text to be foreground against background.
(But bear in mind that not all interpreters can display coloured text, and not all players
enjoy reading it.) Even in a monochrome game, text can be set to print in ‘‘reverse
colours’’: background on foreground rather than vice versa. Status lines are almost
always printed in reverse-colour, but this is only a convention and is not required by the
Z-machine. Reverse is one of five possible text styles: roman, bold, underline (which
many interpreters will render with italic), reverse and fixed-pitch. (Inform’s style
statement chooses between these.)

•4EXERCISE 123
Design a title page for ‘Ruins’, displaying a more or less apposite quotation and waiting
for a key to be pressed. (For this last part, see below.)

•4EXERCISE 124
Change the status line so that it has the usual score/moves appearance except when a
variable invisible_status is set to true, when it’s invisible.



§   

•4EXERCISE 125
Alter the ‘Advent’ example game to display the number of treasures found instead of
the score and turns on the status line.

•4EXERCISE 126
(From code by Joachim Baumann.) Put a compass rose on the status line, displaying
the directions in which the room can be left.

•44EXERCISE 127
(Cf. ‘Trinity’.) Make the status line consist only of the name of the current location,
centred in the top line of the screen.

The version 6 screen model. We are now in the realm of graphics, and the screen is
considered to be a grid of pixels: coordinates are usually given in the form (y, x), with
(1, 1) at the top left. y and x are measured in units known, helpfully enough, as ‘‘units’’.
The interpreter decides how large ‘‘1 unit’’ is, and it’s not safe to assume that 1 unit
equals 1 pixel. All you can tell is what the screen dimensions are, in units:

print "The screen measures ", $22-->0, " units across and ",
$22-->1, " units down.^";

There are eight windows, numbered 0 to 7, which text and pictures can currently
be printing to: what actually appears on the screen is whatever shows through the
boundaries of the window at the time the printing or plotting happens. Window
number −3 means ‘‘the current one’’. Windows have no visible borders and usually
lie on top of each other. Subsequent movements of the window do not move what
was printed and there is no sense in which characters or graphics ‘‘belong’’ to any
particular window once printed. Each window has a position (in units), a size (in units),
a cursor position within it (in units, relative to its own origin), a number of flags called
‘‘attributes’’ and a number of variables called ‘‘properties’’. If you move a window so
that the cursor is left outside, the interpreter automatically moves the cursor back to
the window’s new top left. If you only move the cursor, it’s your responsibility to make
sure it doesn’t leave the window.

The attributes are (0) ‘‘wrapping’’, (1) ‘‘scrolling’’, (2) ‘‘copy text to output
stream 2 if active’’ and (3) ‘‘buffer printing’’. Wrapping means that when text reaches
the right-hand edge it continues from the left of the next line down. Scrolling means
scrolling the window upwards when text printing reaches the bottom right corner, to
make room for more. Output stream 2 is the transcript file, so the question here is
whether you want text in the given window to appear in a transcript: for instance, for
a status line the answer is probably ‘‘no’’, but for normal conversation it would be
‘‘yes’’. Finally, buffering is a more sophisticated form of wrapping, which breaks lines
of text in between words, but which (roughly speaking) means that no line is printed
until complete. Note that ordinary printing in the lower window has all four of these
attributes.

@window_style window attrs operation



§   

Changes window attributes. attrs is a bitmap in which bit 0 means ‘‘wrapping’’, bit
1 means ‘‘scrolling’’, etc. operation is 0 to set to these settings, 1 to set only those
attributes which you specify in the bitmap, 2 to clear only those and 3 to reverse them.
For instance,

@window_style 2 $$1011 0

sets window 2 to have wrapping, scrolling and buffering but not to be copied to output
stream 2, and

@window_style 1 $$1000 2

clears the buffer printing attribute of window 1.
Windows have 16 properties, numbered as follows:

0 y coordinate 8 newline interrupt routine
1 x coordinate 9 interrupt countdown
2 y size 10 text style
3 x size 11 colour data
4 y cursor 12 font number
5 x cursor 13 font size
6 left margin size 14 attributes
7 right margin size 15 line count

The x and y values are all in units, but the margin sizes are in pixels. The font size data
is 256*h+w, where h is the height and w the width in pixels. The colour data is 256*b+f,
where f and b are foreground and background colour numbers. The text style is a
bitmap set by the Inform style statement: bit 0 means Roman, 1 is reverse video, 2 is
bold, 3 is italic, 4 is fixed-pitch. The current value of any property can be read with:

@get_wind_prop window prop -> r

Those few window properties which are not italicised in the table (and only those few)
can be set using:

@put_wind_prop window prop value

Most window properties, the ones with italicised text in the table above, are set using
specially-provided opcodes:

@move_window window y x

Moves to the given position on screen. Nothing visible happens, but all future plotting
to the given window will happen in the new place.

@window_size window y x

Changes window size in pixels. Again, nothing visible happens.

@set_colour foreground background window

Sets the foreground and background colours for the given window.



§   

@set_cursor line column window

Moves the window’s cursor to this position, in units, relative to (1, 1) in the top left
of the window. If this would lie outside the margin positions, the cursor moves to the
left margin of its current line. In addition, @set_cursor -1 turns the cursor off, and
@set_cursor -2 turns it back on again.

@get_cursor arr

Writes the cursor row of the current window into arr-->0 and the column into arr-->1,
in units.

@set_font font -> r

(This opcode is available in Versions 5 and 8 as well as 6.) Selects the numbered font
for the current window, and stores a positive number into r (actually, the previous
font number) if available, or zero if not available. Font support is only minimal, for
the sake of portability. The possible font numbers are: 1 (the normal font), 3 (a
character graphics font: see §16 of The Z-Machine Standards Document), 4 (a fixed-pitch
Courier-like font). Owing to a historical accident there is no font 2.

@set_margins left right window

Sets margin widths, in pixels, for the given window. If the cursor is overtaken in the
process and now lies outside these margins, it is moved back to the left margin of the
current line.

4 ‘‘Interrupt countdowns’’ are a fancy system to allow text to flow gracefully around
obstructions such as pictures. If property 9 is set to a non-zero value, then it’ll be
decremented on each new-line, and when it hits zero the routine in property 8 will be
called. This routine should not attempt to print any text, and is usually used to change
margin settings.

•EXERCISE 128
(Version 6 games only.) Set up wavy margins, which advance inwards for a while
and then back outwards, over and over, so that the game’s text ends up looking like a
concertina.

Here are two useful tricks with windows:

@erase_window window

Erases the window’s whole area to its background colour.

@scroll_window window pixels

Scrolls the given window by the given number of pixels. A negative value scrolls back-
wards, i.e., moving the body of the window down rather than up. Blank (background
colour) pixels are plotted onto the new lines. This can be done to any window and is
not related to the ‘‘scrolling’’ attribute of a window.



§   

4 Finally, Version 6 story files (but no others) are normally able to display images,
or ‘‘pictures’’. To the Z-machine these are referred to only by number, and a story file
does not ‘‘know’’ how pictures are provided to it, or in what format they are stored.
For the mechanics of how to attach resources like pictures to a story file, see §43. Four
opcodes are concerned with pictures:

@draw_picture pn y x

Draws picture number pn so that its top left corner appears at coordinates (y, x) in
units on the screen. If y or x are omitted, the coordinate of the cursor in the current
window is used.

@erase_picture pn y x

Exactly as @draw_picture, but erases the corresponding screen area to the current
background colour.

@picture_data pn arr ?Label

Asks for information about picture number pn. If the given picture exists, a branch
occurs to the given Label, and the height and width in pixels of the image are written
to the given array arr, with arr-->0 being the height and arr-->1 the width. If the
given picture doesn’t exist, no branch occurs and nothing is written, except that if pn
is zero, then arr-->0 is the number of pictures available to the story file and arr-->1
the ‘‘release number’’ of the collection of pictures. (Or of the Blorb file attached to the
story file, if that’s how pictures have been provided to it.)

@picture_table tarr

Given a table array tarr of picture numbers, this warns the Z-machine that the story
file will want to plot these pictures often, soon and in quick succession. Providing such
a warning is optional and enables some interpreters to plot more quickly, because they
can cache images in memory somewhere.

· · · · ·

4 Sound effects are available to story files of any Version from 5 upwards. Once
again, to the Z-machine these are referred to only by number, and a story file does
not ‘‘know’’ how sounds are provided to it, or in what format they are stored. For the
mechanics of how to attach resources like sound effects to a story file, see §43. There is
only one sound opcode, but it does a good deal. The simplest form is:

@sound_effect number

which emits a high-pitched bleep if number is 1 and a low-pitched bleep if 2. No other
values are allowed.



§   

@sound_effect number effect volrep routine

The given effect happens to the given sound number, which must be 3 or higher
and correspond to a sound effect provided to the story file by the designer. Volume
is measured from 1 (quiet) to 8 (loud), with the special value 255 meaning ‘‘loudest
possible’’, and you can also specify between 0 and 254 repeats, or 255 to mean ‘‘repeat
forever’’. These two parameters are combined in volrep:

volrep = 256*repeats + volume;

The effect can be: 1 (prepare), 2 (start), 3 (stop), 4 (finish with). You may want to
‘‘warn’’ the Z-machine that a sound effect will soon be needed by using the ‘‘prepare’’
effect, but this is optional: similarly you may want to warn it that you’ve finished with
the sound effect for the time being, but this too is optional. ‘‘Start’’ and ‘‘stop’’ are
self-explanatory except to say that sound effects can be playing in the background while
the player gets on with play: i.e., the Z-machine doesn’t simply halt until the sound is
complete. The ‘‘stop’’ effect makes the sound cease at once, even if there is more still
to be played. Otherwise, unless set to repeat indefinitely, it will end by itself in due
course. If a routine has been provided (this operand is optional, and takes effect only
on effect 2), this routine will then be called as an interrupt. Such routines generally do
something like play the sound again but at a different volume level, giving a fading-away
effect.

· · · · ·

4 In addition to reading entire lines of text from the keyboard, which games normally
do once per turn, you can read a single press of a key. Moreover, on most interpreters
you can set either kind of keyboard-reading to wait for at most a certain time before
giving up.

@aread text parse time function -> result

This opcode reads a line of text from the keyboard, writing it into the text string array
and ‘tokenising’ it into a word stream, with details stored in the parse string array
(unless this is zero, in which case no tokenisation happens). (See §2.5 for the format
of text and parse.) While it is doing this it calls function() every time tenths of
a second: the process ends if ever this function returns true. The value written into
result is the ‘‘terminating character’’ which finished the input, or else 0 if a time-out
ended the input.

@read_char 1 time function -> result

Results in the ZSCII value of a single keypress. Once again, function(time) is called
every time tenths of a second and may stop this process early. (The first operand is
always 1, meaning ‘‘from the keyboard’’.)



§   

@tokenise text parse dictionary

This takes the text in the text buffer (in the format produced by @aread) and tokenises
it, i.e., breaks it up into words and finds their addresses in the given dictionary. The
result is written into the parse buffer in the usual way.

@encode_text zscii-text length from coded-text

Translates a ZSCII word to the internal, Z-encoded, text format suitable for use in
a @tokenise dictionary. The text begins at from in the zscii-text and is length
characters long, which should contain the right length value (though in fact the
interpreter translates the word as far as a zero terminator). The result is 6 bytes long
and usually represents between 1 and 9 letters.

It’s also possible to specify which ZSCII character codes are ‘‘terminating characters’’,
meaning that they terminate a line of input. Normally, the return key is the only
terminating character, but others can be added, and this is how games like ‘Beyond
Zork’ make function keys act as shorthand commands. For instance, the following
directive makes ZSCII 132 (cursor right) and 136 (function key f4) terminating:

Zcharacter terminating 132 136;

The legal values to include are those for the cursor, function and keypad keys, plus
mouse and menu clicks (see Table 2 for values). The special value 255 makes all of
these characters terminating. (For other uses of Zcharacter, see §36.)

•EXERCISE 129
Write a ‘‘press any key to continue’’ routine.

•EXERCISE 130
And another routine which determines if any key is being held down, returning either
its ZSCII code or zero to indicate that no key is being held down.

•EXERCISE 131
Write a game in which a player taking more than ten seconds to consider a command
is hurried along.

•EXERCISE 132
And if thirty seconds are taken, make the player’s mind up for her.

•EXERCISE 133
Design an hourglass fixed to a pivot on one room’s wall, which (when turned upright)
runs sand through in real time, turning itself over automatically every forty seconds.

· · · · ·



§   

4 Besides the keyboard, Version 6 normally supports the use of a mouse. In theory
this can have any number of buttons, but since some widely-used computers have
single-button mice (e.g., the Apple Macintosh) it’s safest not to rely on more than one.

The mouse must be attached to one of the eight windows for it to register properly.
(Initially, it isn’t attached to any window and so is entirely inert.) To attach it to the
window numbered wnum, use the opcode:

@mouse_window wnum

Once attached, a click within the window will register as if it were a key-press to
@read_char with ZSCII value 254, unless it is a second click in quick succession to
a previous click in the same position, in which case it has ZSCII value 253. Thus, a
double-clicking registers twice, once as click (254) and then as double-click (253).

At any time, the mouse position, measured in units, and the state of its buttons,
i.e., pressed or not pressed, can be read off with the opcode:

@read_mouse mouse_array

places (x, y) coordinates of the click in mouse_array-->0 and mouse_array-->1 and
the state of the buttons as a bitmap in mouse_array-->2, with bit 0 representing the
rightmost button, bit 1 the next and so on. In practice, it’s safest simply to test whether
this value is zero (no click) or not (click). The array mouse_array should have room
for 4 entries, however: the fourth relates to menus (see below).

•EXERCISE 134
Write a test program to wait for mouse clicks and then print out the state of the mouse.

4 The mouse also allows access to menus, on some interpreters, though in Version
6 only. The model here is of a Mac OS-style desktop, with one or more menus added
to the menu bar at the top of the screen: games are free to add or remove menus at any
time. They are added with:

@make_menu number mtable ?IfAbleTo;

Such menus are numbered from 3 upwards. mtable is a table array of menu entries,
each of which must be itself a string array giving the text of that option. IfAbleTo is a
label, to which the interpreter will jump if the menu is successfully created. If mtable is
zero, the opcode instead removes an already-existing menu. During play, the selection
of a menu item by the player is signalled to the Z-machine as a key-press with ZSCII
value 252, and the game receiving this can then look up which item on which menu
was selected by looking at entry -->3 in an array given to read_mouse. The value in
this entry will be the menu number times 256, plus the item number, where items are
numbered from 0. If the game has 252 listed as a ‘‘terminating character’’ (see above),
then menu selection can take the place of typing a command.

•EXERCISE 135
Provide a game with a menu of common commands like ‘‘inventory’’ and ‘‘look’’ to
save on typing.



§   

· · · · ·

4 The Z-machine can also load and save ‘‘auxiliary files’’ to or from the host
machine. These should have names adhering to the ‘‘8 + 3’’ convention, that is, one to
eight alphanumeric characters optionally followed by a full stop and one to three further
alphanumeric characters. Where no such extension is given, it is assumed to be .AUX.
Designers are asked to avoid using the extensions .INF, .H, .SAV or .Z5 or similar,
to prevent confusion. Note that auxiliary files from different games may be sharing a
common directory on the host machine, so that a filename should be as distinctive as
possible. The two opcodes are:

@save buffer length filename -> R

Saves the byte array buffer (of size length) to a file, whose (default) name is given in
the filename (a string array). Afterwards, R holds true on success, false on failure.

@restore buffer length filename -> R

Loads in the byte array buffer (of size length) from a file, whose (default) name
is given in the filename (a string array). Afterwards, R holds the number of bytes
successfully read.

•EXERCISE 136
How might this assist a ‘‘role-playing game campaign’’ with several scenarios, each
implemented as a separate Inform game but sharing a player-character who takes
objects and experience from one scenario to the next?

•EXERCISE 137
Design catacombs in which the ghosts of former, dead players from previous games
linger.

· · · · ·

4 Finally, the Z-machine supports a very simple form of exception-handling like
that of the C language’s long jump feature. This is very occasionally useful to get the
program out of large recursive tangles in a hurry.

@catch -> result

The opposite of @throw, @catch preserves the ‘‘stack frame’’ of the current routine in
the variable result: roughly speaking, the stack frame is the current position of which
routine is being run and which ones have called it so far.

@throw value stack-frame

This causes the program to execute a return with value, but as if it were returning from
the routine which was running when the stack-frame was ‘‘caught’’, that is, set up
by a corresponding @catch opcode. Note that you can only @throw back to a routine
which is still running, i.e., to which control will eventually return anyway.



§   

•44EXERCISE 138
Use @throw and @catch to make an exception handler for actions, so that any action
subroutine getting into recursive trouble can throw an exception and escape.

•REFERENCES
The assembly-language connoisseur will appreciate ‘Freefall’ by Andrew Plotkin and
‘Robots’ by Torbjörn Andersson, although the present lack of on-line hints make
these difficult games to win. •Gevan Dutton has made an amazing port of the
classic character-graphic maze adventure ‘Rogue’ to Inform, taking place entirely in
the upper window. •Similarly, ‘Zugzwang’ by Magnus Olsson plots up a chess
position. •The function library "text_functions.h", by Patrick Kellum, offers text
styling and colouring. These routines are entirely written in assembler. Similar facilities
are available from Chris Klimas’s "style.h" and L. Ross Raszewski’s "utility.h".
•Jason Penney’s "V6Lib.h" is a coherent extension to the Inform library for Version 6
games (only), offering support for multiple text windows, images and sounds by means
of class definitions and high-level Inform code. •More modestly, but applicably to
Version 5 and 8 games, L. Ross Raszewski’s "sound.h" function library handles sound
effects.



§43 Pictures, sounds, blurbs and Blorb

The blorb spell (safely protect a small object as though in a strong
box).

— Marc Blank and P. David Lebling, ‘Enchanter’

Pictures may, but need not, accompany a Version 6 game. They
are not stored in the story file itself, and different interpreters
make different arrangements for getting access to them. Some
interpreters can only read low-resolution, low-colour-range images

in the awkward format used by Infocom’s graphical games. Others take pictures
from a ‘‘Blorb file’’ which can hold high-resolution and riotously colourful
images in a format called PNG. The story file neither knows nor cares which,
and refers to pictures only by their numbers.

A Blorb file can also safely protect sound effects and even the story file
itself, so that a game and its multi-media resources can be a single file. Blorb is
a simple format largely devised by Andrew Plotkin (partly based on the same
author’s earlier ‘‘Pickle’’); it has been fully implemented in Kevin Bracey’s
‘Zip2000’ interpreter for Acorn RISC OS machines, and is also used by the
new ‘‘glulx’’ format of story files.

A Perl script called perlBlorb, runnable on many models of computer,
gathers together sounds and images and constructs Blorb files as needed, from
a list of instructions called a ‘‘blurb file’’. For instance:

! Example of a blurb file
copyright "Angela M. Horns 1998"
release 17
palette 16 bit
resolution 600x400
storyfile "games/sherbet.z5"
sound creak "sounds/creaking.snd"
sound wind "sounds/wind.snd"
picture flag "flag.png" scale 3/1
picture pattern "backdrop.png"

When run through perlBlorb, the above produces the text below:

! perlBlorb 1.0 [executing on 980124 at 15:31.33]
Constant SOUND_creak = 3;



§ , ,   

Constant SOUND_wind = 4;
Constant PICTURE_flag = 1;
Constant PICTURE_pattern = 2;
! Completed: size 45684 bytes (2 pictures, 2 sounds)

This output text looks like Inform source code, and this is not an accident:
the idea is that it can be used as an Include file to give sensible names to the
sound and picture numbers, so that the rest of the code can include statements
like this one:

@sound_effect SOUND_creak 2 128 255;

(‘‘start playing this effect at about half maximum volume, repeating it indefi-
nitely’’). An attractive alternative is to use a convenient class library, such as
"V6Lib.h" by Jason Penney, to avoid messing about with assembly language.

You’re free to specify the numbering yourself, and you need not give
names for the pictures and sounds. A blurb command like:

picture "backdrop.png"

gives this image the next picture number: i.e., the previous picture number
plus 1, or just 1 if it’s the first specified picture. On the other hand, a blurb
command like:

picture 100 "backdrop.png"

gives it picture number 100. The only restriction is that pictures must be given
in increasing numerical order. The numbering of sounds is similar.

· · · · ·

4 The full specification for the ‘‘blurb’’ language is as follows. With one exception
(see palette below) each command occupies one and only one line of text. Lines are
permitted to be empty or to contain only white space. Lines whose first non-white-space
character is an exclamation mark are treated as comments, that is, ignored. (‘‘White
space’’ means spaces and tab characters.)

〈string〉 means any text within double-quotes, not containing either double-quote or
new-line characters

〈number〉 means a decimal number in the range 0 to 32767

〈id〉 means either nothing at all, or a 〈number〉, or a sequence of up to 20 letters, digits
or underscore characters _



§ , ,   

〈dim〉 indicates screen dimensions, and must take the form 〈number〉x〈number〉
〈ratio〉 is a fraction in the form 〈number〉/〈number〉. 0/0 is legal but otherwise both
numbers must be positive

〈colour〉 is a colour expressed as six hexadecimal digits, as in some HTML tags: for
instance F5DEB3 is the colour of wheat, with red value F5 (on a scale 00, none, to FF,
full), green value DE and blue value B3. Hexadecimal digits may be given in either upper
or lower case.

With the exception of picture and sound, each type of command can only occur at
most once in any blurb file. Commands can be used in any order or not at all: an empty
‘‘blurb’’ file results in a perfectly legal, if useless, Blorb file. The full set of commands
is as follows:

copyright 〈string〉

Adds this copyright declaration to the file. It would normally consist of the author’s
name and the date.

release 〈number〉

Gives this release number to the file. This is the number returned by the opcode
@picture_data 0 within any game using the Blorb file, and might be used when
printing out version information.

palette 16 bit
palette 32 bit
palette { 〈colour-1〉 . . . 〈colour-N〉 }

Blorb allows designers to signal to the interpreter that a particular colour-scheme is in
use. The first two options simply suggest that the pictures are best displayed using at
least 16-bit, or 32-bit, colours. The third option specifies colours used in the pictures in
terms of red/green/blue levels, and the braces allow the sequence of colours to continue
over many lines. At least one and at most 256 colours may be defined in this way. This
is only a ‘‘clue’’ to the interpreter; see the Blorb specification for details.

resolution 〈dim〉
resolution 〈dim〉 min 〈dim〉
resolution 〈dim〉 max 〈dim〉
resolution 〈dim〉 min 〈dim〉 max 〈dim〉

Allows the designer to signal a preferred screen size, in real pixels, in case the interpreter
should have any choice over this. The minimum and maximum values are the extreme
values at which the designer thinks the game will be playable: they’re optional, the
default values being 0x0 and infinity by infinity.

storyfile 〈string〉



§ , ,   

storyfile 〈string〉 include

Tells perlBlorb the filename of the Z-code story file which these resources are being
provided for. (There is no need to do this if you prefer not to.) Usually the Blorb file
simply contains a note of the release number, serial code and checksum of the story file,
which an interpreter can try to match at run-time to see if the Blorb file and story file
go together. If the include option is used, however, the entire story file is embedded
within the Blorb file, so that game and resources are all bound up in one single file.

sound 〈id〉 〈string〉
sound 〈id〉 〈string〉 repeat 〈number〉
sound 〈id〉 〈string〉 repeat forever
sound 〈id〉 〈string〉 music
sound 〈id〉 〈string〉 song

Tells perlBlorb to take a sound sample from the named file and make it the sound effect
with the given number. The file should be an AIFF file unless music is specified, in
which case it should be a MOD file (roughly speaking a SoundTracker file); or unless
song is specified, in which case it should be a song file (roughly, a SoundTracker file
using other Blorb sound effects as note samples). Note that repeat information (the
number of repeats to be played) is meaningful only with version 3 story files using
sound effects, as only Infocom’s ‘The Lurking Horror’ ever has.

picture 〈id〉 〈string〉
picture 〈id〉 〈string〉 scale 〈ratio〉
picture 〈id〉 〈string〉 scale min 〈ratio〉
picture 〈id〉 〈string〉 scale 〈ratio〉 min 〈ratio〉
and so on

Similarly for pictures: the named file must be a PNG-format image. Optionally, the
designer can specify a scale factor at which the interpreter will display the image – or,
alternatively, a range of acceptable scale factors, from which the interpreter may choose
its own scale factor. (By default an image is not scaleable and an interpreter must
display it pixel-for-pixel.) There are three optional scale factors given: the preferred
scale factor, the minimum and the maximum allowed. The minimum and maximum
each default to the preferred value if not given, and the default preferred scale factor is
1. Scale factors are expressed as fractions: so for instance,

picture "flag/png" scale 3/1

means ‘‘always display three times its normal size’’, whereas

picture "backdrop/png" scale min 1/10 max 8/1

means ‘‘you can display this anywhere between one tenth normal size and eight times
normal size, but if possible it ought to be just its normal size’’.



§ , ,   

•REFERENCES
The Perl script ‘perlBlorb’ is available from the Inform web-page. •The source
code to Kevin Bracey’s fully Blorb-compliant standard interpreter ‘Zip2000’ is pub-
lic. •Andrew Plotkin has published generic C routines for handling Blorb files.
•Numerous utility programs exist which will convert GIF or JPEG images to PNG
format, or WAV and MPEG sounds to AIFF.



§44 Case study: a library file for menus

Yes, all right, I won’t do the menu. . . I don’t think you realise how
long it takes to do the menu, but no, it doesn’t matter, I’ll hang
the picture now. If the menus are late for lunch it doesn’t matter,
the guests can all come and look at the picture till they are ready,
right?

— John Cleese and Connie Booth, Fawlty Towers

Sometimes one would like to provide a menu of text options, offered
to the player as a list on screen which can be rummaged through
with the cursor keys. For instance, the hints display in the ‘‘solid
gold’’ edition of Infocom’s ‘Zork I’ shows a list of ‘‘Invisiclues’’:

‘‘Above Ground’’, ‘‘The Cellar Area’’, and so on. Moving a cursor to one of
these options and pressing RETURN brings up a sub-menu of questions on the
general topic chosen: for instance, ‘‘How do I cross the mountains?’’ Besides
hints, many modern games use menu displays for instructions, background
information, credits and release notes.

An optional library file called "Menus.h" is provided to manage such
menus. If you want its facilities then, where you previously included Verblib,
now write:

Include "Verblib";
Include "Menus";

And this will make the features of Menus.h available. This section describes
what these simple features are, and how they work, as an extended example of
Z-machine programming.

The designer of this system began by noticing that menus and submenus
and options fit together in a tree structure rather like the object tree:

Hints for ‘Zork I’ (menu)
−→ Above Ground (submenu)

−→ How do I cross the mountains? (option)
−→ some text is revealed

−→ The Cellar Area (submenu)
−→ . . .



§  :     

The library file therefore defines two classes of object, Menu and Option. The
short name of a menu is its title, while its children are the possible choices,
which can be of either class. (So you can have as many levels of submenu as
needed.) Since choosing an Option is supposed to produce some text, which is
vaguely like examining objects, the description property of an Option holds
the information revealed. So, for instance:

Menu hints_menu "Hints for Zork I";
Menu -> "Above Ground";
Option -> -> "How do I cross the mountains?"
with description "By ...";

Menu -> "The Cellar Area";

Note that such a structure can be rearranged in play just as the rest of the
object tree can, which is convenient for ‘‘adaptive hints’’, where the hints
offered vary with the player’s present travail.

How does this work? A menu or an option is chosen by being sent the
message select. So the designer will launch the menu, perhaps in response to
the player having typed ‘‘hints’’, like so:

[HintsSub;
hints_menu.select();

];

As the player browses through the menu, each menu sends the select
message to the next one chosen, and so on. This already suggests that menus
and options are basically similar, and in fact that’s right: Menu is actually a
subclass of Option, which is the more basic idea of the two.

· · · · ·

The actual code of Menus.h is slightly different from that given below, but only
to fuss with dealing with early copies of the rest of the library, and to handle
multiple languages. It begins with the class definition of Option, as follows:

Class Option
with select [;

self.emblazon(1, 1, 1);
@set_window 0; font on; style roman; new_line; new_line;
if (self provides description) return self.description();
"[No text written for this option.]^";

],



§  :     

The option sends itself the message emblazon(1,1,1) to clear the screen and
put a bar of height 1 line at the top, containing the title of the option centred.
The other two 1s declare that this is ‘‘page 1 of 1’’: see below. Window 0 (the
ordinary, lower window) is then selected; text reverts to its usual state of being
roman-style and using a variable-pitched font. The screen is now empty and
ready for use, and the option expects to have a description property which
actually does any printing that’s required. To get back to the emblazoning:

emblazon [bar_height page pages temp;
screen_width = 0->33;
! Clear screen:
@erase_window -1;
@split_window bar_height;
! Black out top line in reverse video:
@set_window 1;
@set_cursor 1 1;
style reverse; spaces(screen_width);
if (standard_interpreter == 0)

@set_cursor 1 1;
else {

ForUseByOptions-->0 = 128;
@output_stream 3 ForUseByOptions;
print (name) self;
if (pages ~= 1) print " [", page, "/", pages, "]";
@output_stream -3;
temp = (screen_width - ForUseByOptions-->0)/2;
@set_cursor 1 temp;

}
print (name) self;
if (pages ~= 1) print " [", page, "/", pages, "]";
return ForUseByOptions-->0;

];

That completes Option. However, since this code refers to a variable and an
array, we had better write definitions of them:

Global screen_width;
Global screen_height;
Array ForUseByOptions -> 129;

(The other global variable, screen_height, will be used later. The variables
are global because they will be needed by all of the menu objects.) The
emblazon code checks to see if it’s running on a standard interpreter. If so,
it uses output stream 3 into an array to measure the length of text like ‘‘The



§  :     

Cellars [2/3]’’ in order to centre it on the top line. If not, the text appears at
the top left instead.

So much for Option. The definition of Menu is, inevitably, longer. It
inherits emblazon from its superclass Option, but overrides the definition of
select with something more elaborate:

Class Menu class Option
with select [count j obj pkey line oldline top_line bottom_line

page pages options top_option;
screen_width = 0->33;
screen_height = 0->32;
if (screen_height == 0 or 255) screen_height = 18;
screen_height = screen_height - 7;

The first task is to work out how much room the screen has to display options.
The width and height, in characters, are read out of the story file’s header
area, where the interpreter has written them. In case the interpreter is really
poor, we guess at 18 if the height is claimed to be zero or 255; since this is
a library file and will be widely used, it errs on the side of extreme caution.
Finally, 7 is subtracted because seven of the screen lines are occupied by the
panel at the top and white space above and below the choices. The upshot is
that screen_height is the actual maximum number of options to be offered
per page of the menu. Next: how many options are available?

options = 0;
objectloop (obj in self && obj ofclass Option) options++;
if (options == 0) return 2;

(Note that a Menu is also an Option.) We can now work out how many pages
will be needed.

pages = options/screen_height;
if (options%screen_height ~= 0) pages++;
top_line = 6;
page = 1;
line = top_line;

top_line is the highest screen line used to display an option: line 6. The local
variables page and line show which line on which page the current selection
arrow points to, so we’re starting at the top line of page 1.

.ReDisplay;
top_option = (page - 1) * screen_height;



§  :     

This is the option number currently selected, counting from zero. We display
the three-line black strip at the top of the screen, using emblazon to create the
upper window:

self.emblazon(7 + count, page, pages);
@set_cursor 2 1; spaces(screen_width);
@set_cursor 2 2; print "N = next subject";
j = screen_width-12; @set_cursor 2 j; print "P = previous";
@set_cursor 3 1; spaces(screen_width);
@set_cursor 3 2; print "RETURN = read subject";
j = screen_width-17; @set_cursor 3 j;

The last part of the black strip to print is the one offering Q to quit:

if (sender ofclass Option) print "Q = previous menu";
else print " Q = resume game";
style roman;

The point of this is that pressing Q only takes us back to the previous menu if
we’re inside the hierarchy, i.e., if the message select was sent to this Menu by
another Option; whereas if not, Q takes us out of the menu altogether. Next,
we count through those options appearing on the current page and print their
names.

count = top_line; j = 0;
objectloop (obj in self && obj ofclass Option) {

if (j >= top_option && j < (top_option+screen_height)) {
@set_cursor count 6;
print (name) obj;
count++;

}
j++;

}
bottom_line = count - 1;

Note that the name of the option begins on column 6 of each line. The player’s
current selection is shown with a cursor > appearing in column 4:

oldline = 0;
for (::) {

! Move or create the > cursor:
if (line ~= oldline) {

if (oldline ~= 0) {
@set_cursor oldline 4; print " ";

}
@set_cursor line 4; print ">";



§  :     

}
oldline = line;

Now we wait for a single key-press from the player:

@read_char 1 -> pkey;
if (pkey == ’N’ or ’n’ or 130) {

! Cursor down:
line++;
if (line > bottom_line) {

line = top_line;
if (pages > 1) {

if (page == pages) page = 1; else page++;
jump ReDisplay;

}
}
continue;

}

130 is the ZSCII code for ‘‘cursor down key’’. Note that if the player tries to
move the cursor off the bottom of the list, and there’s at least one more page,
we jump right out of the loop and back to ReDisplay to start again from the
top of the next page. Handling the ‘‘previous’’ option is very similar, and then:

if (pkey == ’Q’ or ’q’ or 27 or 131) break;

Thus pressing lower or upper case Q, escape (ZSCII 27) or cursor left (ZSCII
131) all have the same effect: to break out of the for loop. Otherwise, one can
press RETURN or cursor right to select an option:

if (pkey == 10 or 13 or 132) {
count = 0;
objectloop (obj in self && obj ofclass Option) {

if (count == top_option + line - top_line) break;
count++;

}
switch (obj.select()) {

2: jump ReDisplay;
3: jump ExitMenu;

}
print "[Please press SPACE to continue.]^";
@read_char 1 -> pkey;
jump ReDisplay;

}
}



§  :     

(No modern interpreter should ever give 10 for the key-code of RETURN,
which is ZSCII 13. Once again, the library file is erring on the side of extreme
caution.) An option’s select routine can return three different values for
different effects:

2 Redisplay the menu page that selected me
3 Exit from that menu page

anything else Wait for SPACE, then redisplay that menu page

Finally, the exit from the menu, either because the player typed Q, escape,
etc., or because the selected option returned 3:

.ExitMenu;
if (sender ofclass Option) return 2;
font on; @set_cursor 1 1;
@erase_window -1; @set_window 0;
new_line; new_line; new_line;
if (deadflag == 0) <<Look>>;
return 2;

];

And that’s it. If this menu was the highest-level one, it needs to resume the
game politely, by clearing the screen and performing a Look action. If not, then
it needs only to return 2, indicating ‘‘redisplay the menu page that selected
me’’: that is, the menu one level above.

The only remaining code in "Menus.h" shows some of the flexibility of
the above design, by defining a special type of option:

Class SwitchOption class Option
with short_name [;

print (object) self, " ";
if (self has on) print "(on)"; else print "(off)";
rtrue;

],
select [;

if (self has on) give self ~on; else give self on;
return 2;

];

Here is an example of SwitchOptions in use:

Menu settings "Game settings";
SwitchOption -> FullRoomD "full room descriptions" has on;
SwitchOption -> WordyP "wordier prompts";
SwitchOption -> AllowSavedG "allow saved games" has on;



§  :     

So each option has the attribute on only if currently set. In the menu, the
option FullRoomD is displayed either as ‘‘full room descriptions (on)’’ or ‘‘full
room descriptions (off)’’, and selecting it switches the state, like a light switch.
The rest of the code can then perform tests like so:

if (AllowSavedG hasnt on) "That spell is forbidden.";

· · · · ·

Appearance of the final menu on a screen 64 characters wide:
line 1 Hints for Zork I [1/2]
line 2 N = next subject P = previous
line 3 RETURN = read subject Q = resume game
line 4
line 5
line 6 Above Ground
line 7 > The Cellar Area
line 8 The Maze
line 9 The Round Room Area

•REFERENCES
Because there was a crying need for good menus in the early days of Inform, there
are now numerous library extensions to support menus and interfaces built from them.
The original such was L. Ross Raszewski’s "domenu.h", which provides a core of
basic routines. "AltMenu.h" then uses these routines to emulate the same menu
structures coded up in this section. "Hints.h" employs them for Invisiclues-style
hints; "manual.h" for browsing books and manuals; "converse.h" for menu-based
conversations with people, similar to those in graphical adventure games. Or indeed
to those in Adam Cadre’s game ‘Photopia’, and Adam has kindly extracted his menu-
based conversational routines into an example program called "phototalk.inf".
For branching menus, such as a tree of questions and answers, try Chris Klimas’s
"branch.h". To put a menu of commands at the status line of a typical game, try
Adam Stark’s "action.h".



§45 Limitations and getting around them

How wide the limits stand
Between a splendid and an happy land.

— Oliver Goldsmith (1728–1774), The Deserted Village

The Z-machine is well-designed, and has three major advantages:
it is compact, widely portable and can be quickly executed. Never-
theless, like any rigidly defined format it imposes limitations. This
section is intended to help those few designers who encounter the

current limits. Some of the economy-measures below may sound like increas-
ingly desperate manoeuvres in a lost battle, but if so then the cavalry is on its
way: Andrew Plotkin has written a hybrid version of Inform which removes
almost every restriction. Although it doesn’t quite have all the nooks and
crannies of Inform yet working, it does allow most games to compile without
difficulty to a very much larger virtual machine than the Z-machine called
‘‘glulx’’.

1. Story file size. The maximum size of a story file (in K) is given by:

V3 V4 V5 V6 V7 V8
128 256 256 512 320 512

Because the centralised library of Inform is efficient in terms of not duplicating
code, even 128K allows for a game at least half as large again as a typical
old-style Infocom game. Inform is normally used only to produce story files of
Versions 5, 6 and 8. Version 5 is the default; Version 6 should be used where
pictures or other graphical features are essential to the game; Version 8 is a
size extension for Version 5, allowing games of fairly gargantuan proportions.

4 If story file memory does become short, a standard mechanism can save about
8–10% of the total memory, though it will not greatly affect readable memory extent.
Inform does not usually trouble with this economy measure, since there’s very seldom
any need, and it makes the compiler run about 10% slower. What you need to do
is define abbreviations and then run the compiler in its ‘‘economy’’ mode (using the
switch -e). For instance, the directive

Abbreviate " the ";

(placed before any text appears) will cause the string ‘‘ the ’’ to be internally stored as
a single ‘letter’, saving memory every time it occurs (about 2,500 times in ‘Curses’, for



§     

instance). You can have up to 64 abbreviations. When choosing abbreviations, avoid
proper nouns and instead pick on short combinations of a space and common two- or
three-letter blocks. Good choices include " the ", "The ", ", ", " and ", "you", "
a ", "ing ", " to". You can even get Inform to work out by itself what a good stock
of abbreviations would be, by setting the -u switch: but be warned, this makes the
compiler run about 29,000% slower.

2. Readable memory size. In a very large game, or even a small one if it
uses unusually large or very many arrays, the designer may run up against the
following Inform fatal error message:

This program has overflowed the maximum readable-memory size of the
Z-machine format. See the memory map below: the start of the area marked
‘‘above readable memory’’ must be brought down to $10000 or less.

In other words, the readable-memory area is absolutely limited to 65,536
bytes in all Versions. Using the -D debugging option increases the amount of
readable-memory consumed, and the Infix -X switch increases this further yet.
(For instance ‘Advent’ normally uses 24,820 bytes, but 25,276 with -D and
28,908 with -X.) The following table suggests what is, and what is not, worth
economising on.

Each. . . Costs. . .

Routine 0
Text in double-quotes 0

Object or class 26
Common property value 3

Non-common property value 5
If a property holds an array add 2 for each entry after the first

Dictionary word 9

Verb 3
Different action 4
Grammar token 3

--> or table array entry 2
-> or string array entry 1

To draw some morals: verbs, actions, grammar and the dictionary consume
little readable memory and are too useful to economise on. Objects and arrays
are where savings can be made. Here is one strategy for doing so.

2a. Economise on arrays. Many programmers create arrays with more
entries than needed, saying in effect ‘‘I’m not sure how many this will take,
but it’s bound to be less than 1,000, so I’ll say 1,000 entries to be on the safe



§     

side.’’ More thought will often reduce the number. If not, look at the typical
contents. Are the possible values always between 0 and 255? If so, make it a ->
or string array and the consumption of readable memory is halved. Are the
possible values always true or false? If so, Adam Cadre’s "flags.h" library
extension offers a slower-access form of array but which consumes only about
1/8th of a byte of readable memory per array entry.

2b. Turn arrays of constants into routines. Routines cost nothing in readable
memory terms, but they can still store information as long as it doesn’t need
to vary during play. For instance, ‘Curses’ contains an array beginning:

Array RadioSongs table
"Queen’s ~I Want To Break Free~."
"Bach’s ~Air on a G-string~."
"Mozart’s ~Musical Joke~."

and so on for dozens more easy-listening songs which sometimes play on Aunt
Jemima’s radio. It might equally be a routine:

[RadioSongs n;
switch (n) {

0: return 100; ! Number of songs
1: return "Queen’s ~I Want To Break Free~.";
2: return "Bach’s ~Air on a G-string~.";
3: return "Mozart’s ~Musical Joke~.";

and so on. Instead of reading RadioSongs-->x, one now reads RadioSongs(x).
Not an elegant trick, but it saves 200 bytes of readable memory.

2c. Economise on object properties. Each time an object provides a property,
readable memory is used. This is sometimes worth bearing in mind when
writing definitions of classes which will have many members. For instance:

Class Doubloon(100)
with name ’gold’ ’golden’ ’spanish’ ’doubloon’ ’coin’ ’money’

’coins//p’ ’doubloons//p’,
...

Each of the hundred doubloons has a name array with eight entries, so 1700
bytes of readable memory are consumed. This could be reduced to 300 like
so:

Class Doubloon(100)
with parse_name [;

! A routine detecting the same name-words
...
],



§     

2d. Make commonly occurring properties common. Recall that properties
declared with the Property directive are called ‘‘common properties’’: these
are faster to access and consume less memory. If, for instance, each of 100
rooms in your game provides a property called time_zone, then the declaration

Property time_zone;

at the start of your code will save 2 bytes each time time_zone is provided,
saving 200 bytes in all. (The library’s properties are all common already.)

2e. Economise on objects. In a room with four scenery objects irrelevant to
the action, say a window, a chest of drawers, a bed and a carpet, is it strictly
necessary for each to have its own object? Kathleen Fischer: ‘‘parse_name
is your friend. . . a single object with an elaborate parse_name can be used
to cover a whole lot of scenery.’’ In Kathleen’s technique, it would use
parse_name to record which of the words ‘‘window’’, ‘‘chest’’, ‘‘bed’’ or
‘‘carpet’’ was used, storing that information in a property: other properties,
like description, would be routines which produced text depending on what
the object is representing this turn.

2f. Reuse objects. This is a last resort but L. Ross Raszewski’s "imem.h" has
helped several designers through it. Briefly, just as an array was converted to a
routine in (1) above, "imem.h" converts object definitions to routines, with a
minimal number of them ‘‘swapped in’’ as real objects at any given time and
the rest – items of scenery in distant locations, for instance – ‘‘swapped out’’.

3. Grammar. There can be up to 256 essentially different verbs, each with
up to 32 grammar lines. Using the UnknownVerb entry point will get around
the former limit, and general parsing routines can make even a single grammar
line match almost any range of syntax.

4. Vocabulary. There is no theoretical limit except that the dictionary words
each take up 9 bytes of readable memory, which means that 4,000 words is
probably the practical limit. In practice games generally have vocabularies of
between 500 and 2,000 words.

5. Dictionary resolution. Dictionary words are truncated to their first 9 letters
(except that non-alphabetic characters, such as hyphens, count as 2 ‘‘letters’’
for this purpose: look up Zcharacter in the index for references to more
on this). Upper and lower case letters are considered equal. Since general
parsing routines, or parse_name routines, can look at the exact text typed by
the player, finer resolution is easy enough if needed.

6. Attributes, properties, names. There can be up to 48 attributes and an
unlimited number of properties, at most 63 of these can be made common by



§     

being declared with Property. A property entry can hold up to 64 bytes of
data. Hence, for example, an object can have up to 32 names. If an object must
respond to more, give it a suitable parse_name routine.

7. Objects and classes. The number of objects is unlimited so long as there is
readable memory to hold their definitions. The number of classes is presently
limited to 256, of which the library uses only 1.

8. Global variables. There can only be 240 of these, and the Inform compiler
uses 5 as scratch space, while the library uses slightly over 100; but since
a typical game uses only a dozen of its own, code being almost always
object-oriented, the restriction is never felt.

9. Arrays. An unlimited number of Array statements is permitted, although
the entries in arrays consume readable memory (see above).

10. Function calls and messages. A function can be called with at most seven
arguments. A message can be called with at most five.

11. Recursion and stack usage. The limit on this is rather technical (see The
Z-Machine Standards Document). Roughly speaking, recursion is permitted to
a depth of 90 routines in almost all circumstances, and often much deeper.
Direct usage of the stack via assembly language must be modest.



