
Appendices

§A1 Library attributes

absent A ‘floating object’ (one with a found_in property, which can appear in
many different rooms) which is absent will in future no longer appear
in the game. Note that you cannot make a floating object disappear
merely by giving it absent, but must explicitly remove it as well.

animate ‘‘Is alive (human or animal).’’ Can be spoken to in ‘‘richard, hello’’
style; matches the creature token in grammar; picks up ‘‘him’’ or
‘‘her’’ (according to gender) rather than ‘‘it’’, likewise ‘‘his’’; an object
the player is changed into becomes animate; some messages read ‘‘on
whom’’, etc., instead of ‘‘on which’’; can’t be taken; its subobjects
‘‘belong to’’ it rather than ‘‘are part of’’ it; messages don’t assume it
can be ‘‘touched’’ or ‘‘squeezed’’ as an ordinary object can; the actions
Attack, ThrowAt are diverted to life rather than rejected as being
‘futile violence’.

clothing ‘‘Can be worn.’’
concealed ‘‘Concealed from view but present.’’ The player object has this; an

object which was the player until ChangePlayer happened loses this
property; a concealed door can’t be entered; does not appear in room
descriptions.

container Affects scope and light; object lists recurse through it if open (or
transparent); may be described as closed, open, locked, empty; a
possession will give it a LetGo action if the player tries to remove it, or
a Receive if something is put in; things can be taken or removed from
it, or inserted into it, but only if it is open; likewise for ‘‘transfer’’ and
‘‘empty’’; room descriptions describe using when_open or when_closed
if given; if there is no defined description, an Examine causes the
contents to be searched (i.e. written out) rather than a message ‘‘You
see nothing special about. . .’’; Search only reveals the contents of
containers, otherwise saying ‘‘You find nothing’’. Note: an object
cannot be both a container and a supporter.

door ‘‘Is a door or bridge.’’ Room descriptions describe using when_open or
when_closed if given; and an Enter action becomes a Go action. If a
Go has to go through this object, then: if concealed, the player ‘‘can’t
go that way’’; if not open, then the player is told either that this cannot
be ascended or descended (if the player tried ‘‘up’’ or ‘‘down’’), or that
it is in the way (otherwise); but if neither, then its door_to property is





§  

consulted to see where it leads; finally, if this is zero, then it is said to
‘‘lead nowhere’’ and otherwise the player actually moves to the location.

edible ‘‘Can be eaten’’ (and thus removed from game).
enterable Affects scope and light; only an enterable on the floor can be entered.

If an enterable is also a container then it can only be entered or
exited if it is open.

female This object has a feminine name. In games written in English, this makes
her a female person, though in other languages it might be inanimate.
The parser uses this information when considering pronouns like ‘‘her’’.
(In English, anything animate is assumed to be male unless female or
neuter is set.)

general A general-purpose attribute, defined by the library but never looked at
or altered by it. Available for designers to use if they choose to do so.

light ‘‘Is giving off light.’’ (See §19.) Also: the parser understands ‘‘lit’’,
‘‘lighted’’, ‘‘unlit’’ using this; inventories will say ‘‘(providing light)’’
of it, and so will room descriptions if the current location is ordi-
narily dark; it will never be automatically put away into the player’s
SACK_OBJECT, as it might plausibly be inflammable or the main light
source.

lockable Can be locked or unlocked by a player holding its key object, which is
given by the property with_key; if a container and also locked, may
be called ‘‘locked’’ in inventories.

locked Can’t be opened. If a container and also lockable, may be called
‘‘locked’’ in inventories.

male This object has a masculine name. In games written in English,
this makes him a male person, though in other languages it might be
inanimate. The parser uses this information when considering pronouns
like ‘‘him’’. (In English, anything animate is assumed to be male unless
female or neuter is set.)

moved ‘‘Has been or is being held by the player.’’ Objects (immediately)
owned by the player after Initialise has run are given it; at the end
of each turn, if an item is newly held by the player and is scored, it is
given moved and OBJECT_SCORE points are awarded; an object’s initial
message only appears in room descriptions if it is unmoved.

neuter This object’s name is neither masculine nor feminine. (In English,
anything without animate is assumed neuter, because only people and
higher animals have gender. Anything animate is assumed male unless
female or neuter is set. A robot, for instance, might be an animate
object worth making neuter.)

on ‘‘Switched on.’’ A switchable object with on is described by with_on
in room descriptions; it will be called ‘‘switched on’’ by Examine.

open ‘‘Open door or container.’’ Affects scope and light; lists (such as
inventories) recurse through an open container; if a container, called





§  

‘‘open’’ by some descriptions; things can be taken or removed from
an open container; similarly inserted, transferred or emptied. A
container can only be entered or exited if it is both enterable and
open. An open door can be entered. Described by when_open in room
descriptions.

openable Can be opened or closed, unless locked.
pluralname This single object’s name is in the plural. For instance, an object called

‘‘seedless grapes’’ should have pluralname set. The library will then use
the pronoun ‘‘them’’ and the indefinite article ‘‘some’’ automatically.

proper Its short name is a proper noun, and never preceded by ‘‘the’’ or ‘‘The’’.
The player’s object must have this (so something changed into will be
given it).

scenery Not listed by the library in room descriptions; ‘‘not portable’’ to be
taken; ‘‘you are unable to’’ pull, push, or turn it.

scored The player gets OBJECT_SCORE points for picking it up for the first time;
or, if a room, ROOM_SCORE points for visiting it for the first time.

static ‘‘Fixed in place’’ if player tries to take, remove, pull, push or turn.
supporter ‘‘Things can be put on top of it.’’ Affects scope and light; object lists

recurse through it; a possession will give it a LetGo action if the player
tries to remove it, or a Receive if something is put in; things can be
taken or removed from it, or put on it; likewise for transfers; a player
inside it is said to be ‘‘on’’ rather than ‘‘in’’ it; room descriptions list
its contents in separate paragraphs if it is itself listed. Note: an object
cannot be both a container and a supporter.

switchable Can be switched on or off; listed as such by Examine; described using
when_on or when_off in room descriptions.

talkable Player can talk to this object in ‘‘thing, do this’’ style. This is useful for
microphones and the like, when animate is inappropriate.

transparent ‘‘Contents are visible.’’ Affects scope and light; a transparent container
is treated as if it were open for printing of contents.

visited ‘‘Has been or is being visited by the player.’’ Given to a room
immediately after a Look first happens there: if this room is scored then
ROOM_SCORE points are awarded. Affects whether room descriptions are
abbreviated or not.

workflag Temporary flag used by Inform internals, also available to outside rou-
tines; can be used to select items for some lists printed by WriteList-
From.

worn ‘‘Item of clothing being worn.’’ Should only be an object being im-
mediately carried by player. Affects inventories; doesn’t count towards
the limit of MAX_CARRIED; won’t be automatically put away into the
SACK_OBJECT; a Drop action will cause a Disrobe action first; so will
PutOn or Insert.





§  

Note. The only library attributes which it’s useful to apply to locations are light,
scored and visited.





§A2 Library properties
The following table lists every library-defined property. The banner headings
give the name, what type of value makes sense and the default value (if other
than 0). The symbol ⊕ means ‘‘this property is additive’’ so that inherited
values from class definitions pile up into a list, rather than wipe each other out.
Recall that false is the value 0 and true the value 1.

n_to, s_to, e_to, w_to, . . . Room, object or routine
For rooms These twelve properties (there are also ne_to, nw_to, se_to, sw_to, in_to,
out_to, u_to and d_to) are the map connections for the room. A value of 0 means
‘‘can’t go this way’’. Otherwise, the value should either be a room or a door object:
thus, e_to might be set to crystal_bridge if the direction ‘‘east’’ means ‘‘over the
crystal bridge’’.
Routine returns The room or object the map connects to; or 0 for ‘‘can’t go this way’’;
or 1 for ‘‘can’t go this way; stop and print nothing further’’.
Warning Do not confuse the direction properties n_to and so on with the twelve
direction objects, n_obj et al.

add_to_scope List of objects or routine
For objects When this object is in scope (unless it was itself only placed in scope by
PlaceInScope) so are all those listed, or all those nominated by the routine. A routine
given here should call PlaceInScope(obj) to put obj in scope.
No return value

after Routine NULL ⊕
Receives actions after they have happened, but before the player has been told of them.
For rooms All actions taking place in this room.
For objects All actions for which this object is noun (the first object specified in the
command); and all fake actions for it.
Routine returns false to continue (and tell the player what has happened), true to
stop here (printing nothing).
The Search action is a slightly special case. Here, after is called when it is clear that it
would be sensible to look inside the object (e.g., it’s an open container in a light room)
but before the contents are described.

article String or routine "a"
For objects Indefinite article for object or routine to print one.
No return value

articles Array of strings
For objects: If given, these are the articles used with the object’s name. (Provided
for non-English languages where irregular nouns may have unusual vowel-contraction
rules with articles: e.g., with French non-mute ‘H’.)





§  

before Routine NULL ⊕
Receives advance warning of actions (or fake actions) about to happen.
For rooms All actions taking place in this room.
For objects All actions for which this object is noun (the first object specified in the
command); and all fake actions, such as Receive and LetGo if this object is the
container or supporter concerned.
Routine returns false to continue with the action, true to stop here (printing nothing).
First special case: A vehicle object receives the Go action if the player is trying to drive
around in it. In this case:
Routine returns 0 to disallow as usual; 1 to allow as usual, moving vehicle and player;
2 to disallow but do (and print) nothing; 3 to allow but do (and print) nothing. If you
want to move the vehicle in your own code, return 3, not 2: otherwise the old location
may be restored by subsequent workings.
Second special case: in a PushDir action, the before routine must call AllowPushDir()
and then return true in order to allow the attempt (to push an object from one room
to another) to succeed.

cant go String or routine "You can’t go that way."
For rooms Message, or routine to print one, when a player tries to go in an impossible
direction from this room.
No return value

capacity Number or routine 100
For objects Number of objects a container or supporter can hold.
For the player-object Number of things the player can carry (when the player is this
object); the default player object (selfobj) has capacity initially set to the constant
MAX_CARRIED.

daemon Routine
This routine is run each turn, once it has been activated by a call to StartDaemon, and
until stopped by a call to StopDaemon.

describe Routine NULL ⊕
For objects Called when the object is to be described in a room description, before any
paragraph break (i.e., skipped line) has been printed. A sometimes useful trick is to
print nothing in this routine and return true, which makes an object ‘invisible’.
For rooms Called before a room’s long (‘‘look’’) description is printed.
Routine returns false to describe in the usual way, true to stop printing here.

description String or routine
For objects The Examine message, or a routine to print one out.
For rooms The long (‘‘look’’) description, or a routine to print one out.
No return value





§  

door_dir Direction property or routine

For compass objects When the player tries to go in this direction, e.g., by typing the
name of this object, then the map connection tried is the value of this direction property
for the current room. For example, the n_obj ‘‘north’’ object normally has door_dir
set to n_to.
For objects The direction that this door object goes via (for instance, a bridge might
run east, in which case this would be set to e_to).
Routine returns The direction property to try.

door_to Room or routine

For objects The place this door object leads to. A value of 0 means ‘‘leads nowhere’’.
Routine returns The room. Again, 0 (or false) means ‘‘leads nowhere’’. Further, 1
(or true) means ‘‘stop the movement action immediately and print nothing further’’.

each turn String or routine NULL ⊕
String to print, or routine to run, at the end of each turn in which the object is in scope
(after all timers and daemons for that turn have been run).
No return value

found_in List of rooms or routine

This object will be found in all of the listed rooms, or if the routine says so, unless it
has the attribute absent. If an object in the list is not a room, it means ‘‘present in the
same room as this object’’.
Routine returns true to be present, otherwise false. The routine can look at the
current location in order to decide.
Warning This property is only looked at when the player changes rooms.

grammar Routine

For animate or talkable objects This is called when the parser has worked out that the
object in question is being spoken to, and has decided the verb_word and verb_wordnum
(the position of the verb word in the word stream) but hasn’t yet tried any grammar.
The routine can, if it wishes, parse past some words (provided it moves verb_wordnum
on by the number of words it wants to eat up).
Routine returns false to carry on as usual; true to indicate that the routine has parsed
the entire command itself, and set up action, noun and second to the appropriate
order; or a dictionary value for a verb, such as ’take’, to indicate ‘‘parse the command
from this verb’s grammar instead’’; or minus such a value, e.g. -’take’, to indicate
‘‘parse from this verb and then parse the usual grammar as well’’.





§  

initial String or routine

For objects The description of an object not yet picked up, used when a room is
described; or a routine to print one out.
For rooms Printed or run when the room is arrived in, either by ordinary movement or
by PlayerTo.
Warning If the object is a door, or a container, or is switchable, then use one of
the when_ properties rather than initial.
No return value

inside_description String or routine

For objects Printed as part or all of a room description when the player is inside the
given object, which must be enterable.

invent Routine
This routine is for changing an object’s inventory listing. If provided, it’s called twice,
first with the variable inventory_stage set to 1, second with it set to 2. At stage 1, you
have an entirely free hand to print a different inventory listing.
Routine returns Stage 1: false to continue; true to stop here, printing nothing further
about the object or its contents.
At stage 2, the object’s indefinite article and short name have already been printed, but
messages like ‘‘ (providing light)’’ haven’t. This is an opportunity to add something
like ‘‘ (almost empty)".
Routine returns Stage 2: false to continue; true to stop here, printing nothing further
about the object or its contents.

life Routine NULL ⊕
This routine holds rules about animate objects, behaving much like before and after
but only handling the person-to-person events:

Attack Kiss WakeOther ThrowAt Give Show Ask Tell Answer Order

See §17, §18 and the properties orders and grammar.
Routine returns true to stop and print nothing, false to resume as usual (for example,
printing ‘‘Miss Gatsby has better things to do.’’).

list_together Number, string or routine

For objects Objects with the same list_together value are grouped together in object
lists (such as inventories, or the miscellany at the end of a room description). If a string
such as "fish" is given, then such a group will be headed with text such as "five
fish".





§  

A routine, if given, is called at two stages in the process (once with the variable
inventory_stage set to 1, once with it set to 2). These stages occur before and
after the group is printed; thus, a preamble or postscript can be printed. Also, such
a routine may change the variable c_style (which holds the current list style). On
entry, the variable parser_one holds the first object in the group, and parser_two
the current depth of recursion in the list. Applying x=NextEntry(x,parser_two);
moves x on from parser_one to the next item in the group. Another helpful variable is
listing_together, set up to the first object of a group being listed (or to 0 whenever
no group is being listed).
Routine returns Stage 1: false to continue, true not to print the group’s list at all.
Routine returns Stage 2: No return value.

name List of dictionary words ⊕
For objects A list of dictionary words referring to this object.
Warning The parse_name property of an object may take precedence over this, if
present.
For rooms A list of words which the room understands but which refer to things which
‘‘do not need to be referred to in this game’’; these are only looked at if all other
attempts to understand the player’s command have failed.
Warning Uniquely in Inform syntax, these dictionary words are given in double quotes
"thus", whereas in all other circumstances they would be ’thus’. This means they
can safely be only one letter long without ambiguity.

number Any value
A general purpose property left free: conventionally holding a number like ‘‘number of
turns’ battery power left’’. (Now unnecessary, number is a feature left over from earlier
versions of Inform where it was less easy to make new properties.)
For compass objects Note that the standard compass objects defined by the library all
provide a number property, in case this might be useful to the designer.

orders Routine
For animate or talkable objects This carries out the player’s orders (or doesn’t, as it
sees fit): it looks at actor, action, noun and second to do so. Unless this object is the
current player, actor is irrelevant (it is always the player) and the object is the person
being ordered about.
If the player typed an incomprehensible command, like ‘‘robot, og sthou’’, then the
action is NotUnderstood and the variable etype holds the parser’s error number.
If this object is the current player then actor is the person being ordered about. actor
can either be this object -- in which case an action is being processed, because the
player has typed an ordinary command -- or can be some other object, in which case
the player has typed an order. See §18 for how to write orders routines in these cases.
Routine returns true to stop and print nothing further; false to continue. (Unless the
object is the current player, the life routine’s Order section gets an opportunity to
meddle next; after that, Inform gives up.)





§  

parse_name Routine

For objects To parse an object’s name (this overrides the name but is also used in
determining if two objects are describably identical). This routine should try to
match as many words as possible in sequence, reading them one at a time by calling
NextWord(). (It can leave the ‘‘word marker’’ variable wn anywhere it likes).
Routine returns 0 if the text didn’t make any sense at all, −1 to make the parser
resume its usual course (looking at the name), or the number of words in a row which
successfully matched.
In addition to this, if the text matched seems to be in the plural (for instance, a blind
mouse object reading blind mice), the routine can set the variable parser_action to
the value ##PluralFound. The parser will then match with all of the different objects
understood, rather than ask a player which of them is meant.
A parse_name routine may also (voluntarily) assist the parser by telling it whether or
not two objects which share the same parse_name routine are identical. (They may
share the same routine if they both inherit it from a class.) If, when it is called, the
variable parser_action is set to ##TheSame then this is the reason. It can then decide
whether or not the objects parser_one and parser_two are indistinguishable.
Routine returns −1 if the objects are indistinguishable, −2 if not.

plural String or routine

For objects The plural name of an object (when in the presence of others like it),
or routine to print one; for instance, a wax candle might have plural set to "wax
candles".
No return value

react_after Routine
For objects Acts like an after rule, but detects any actions in the vicinity (any actions
which take place when this object is in scope).
Routine returns true to print nothing further; false to carry on.

react_before Routine
For objects Acts like a before rule, but detects any actions in the vicinity (any actions
which take place when this object is in scope).
Routine returns true to stop the action, printing nothing; false to carry on.

short_name Routine
For objects The short name of an object (like ‘‘brass lamp"), or a routine to print it.
Routine returns true to stop here, false to carry on by printing the object’s ‘real’ short
name (the string given at the head of the object’s definition). It’s sometimes useful to
print text like "half-empty " and then return false.





§  

short_name_indef Routine
For objects If set, this form of the short name is used when the name is prefaced by an
indefinite article. (This is not useful in English-language games, but in other languages
adjectival parts of names agree with the definiteness of the article.)

time_left Number
Number of turns left until the timer for this object (if set, which must be done using
StartTimer) goes off. Its initial value is of no significance, as StartTimer will write
over this, but a timer object must provide the property. If the timer is currently set, the
value 0 means ‘‘will go off at the end of the current turn’’, the value 1 means ‘‘. . . at
the end of next turn’’ and so on.

time out Routine NULL ⊕
Routine to run when the timer for this object goes off (having been set by StartTimer
and not in the mean time stopped by StopTimer).
Warning A timer object must also provide a time_left property.

when_closed String or routine
For objects Description, or routine to print one, of something closed (a door or
container) in a room’s long description.
No return value

when_open String or routine
For objects Description, or routine to print one, of something open (a door or
container) in a room’s long description.
No return value

when_on String or routine
For objects Description, or routine to print one, of a switchable object which is
currently switched on, in a room’s long description.
No return value

when_off String or routine
For objects Description, or routine to print one, of a switchable object which is
currently switched off, in a room’s long description.
No return value

with key Object nothing

The key object needed to lock or unlock this lockable object. A player must explicitly
name it as the key being used and be holding it at the time. The value nothing, or 0,
means that no key fits (though this is not made clear to the player, who can try as many
as he likes).





§A3 Library routines
The Inform library files contain about three hundred routines, almost all of
which are ‘‘private’’ in the sense that they are difficult for designers to use,
not useful anyway, and subject to change without notice as the library is
maintained and rewritten. The routines in this appendix are those which are
‘‘open to the public’’. Designers are encouraged to make use of them.

Achieved(tasknum) see §22
Signals to the library that task number tasknum has been achieved, so that points may
be awarded if it has not been achieved before.
No return value

AfterRoutines() see §6
This should be called in the action routine, such as TakeSub, of a group 2 action, such
as Take, once the action has taken place but before anything is printed. It runs through
the after rules as laid out in §6.
Routine returns true if the action has been interrupted by some other rule, false if
not.

AllowPushDir() see §15
Used only inside the before rule for a PushDir action, this routine signals to the library
that the attempt to push an object from one place to another should be allowed.
No return value

Banner() see §21
Prints the game banner. Normally unnecessary, but should be used soon after if your
game suppresses the banner at the Initialise stage.
No return value

ChangePlayer(obj,flag) see §21
Cause the player at the keyboard to play as the given object obj, which must provide a
number property. If the flag is true, then subsequently print messages like ‘‘(as Ford
Prefect)’’ in room description headers. This routine, however, prints nothing itself.
No return value

CommonAncestor(obj1,obj2) see §3
A routine used internally by the library when working out visibilities, and which might
as well be available for public use. Returns the nearest object in the object tree which
(directly or indirectly) contains both obj1 and obj2, or else returns nothing if no such
object exists. For instance if Bedquilt contains bottle and the player carrying a lamp,
the common ancestor of lamp and bottle is Bedquilt.
Routine returns The common ancestor or nothing.





§  

DictionaryLookup(word,length) see §34

Takes the word stored character by character in the array word->0, word->1, . . .,
word->(length-1) and looks it up in the story file’s dictionary.
Routine returns The dictionary value (e.g., ’t’, ’a’, ’k’, ’e’ will return ’take’) or
zero if the word isn’t in the dictionary.

GetGNAOfObject(obj) see §37

Determines the gender-number-animation of the short name of the given object obj.
Routine returns The GNA, which is a number between 0 and 11: see table of GNA
values in §34.

HasLightSource(obj) see §19

Determines whether or not obj ‘‘has light’’, i.e., casts light outward to objects containing
obj: see §19 for a more exact definition.
Routine returns true or false.

IndirectlyContains(obj1,obj2) see §3

The condition obj2 in obj1 only tests whether obj2 is directly contained in obj1, so
that lamp in player would fail if the lamp were in a rucksack carried by the player.
IndirectlyContains(player,lamp) would return true. Formally, the test is whether
obj2 is a child of obj1, or is a child of a child of obj1, or ... and so on. See also the
library routine CommonAncestor above.
Routine returns true or false.

IsSeeThrough(obj) see §19

Determines whether or not obj ‘‘is see-through’’, i.e., allows light to pass through it.
An object is see-through if it has transparent, or supporter, or enterable (unless it
is also a closed container).
Routine returns true or false.

Locale(obj,tx1,tx2) see §26

Prints out the paragraphs of room description which would appear if obj were the
room: i.e., prints out descriptions of objects in obj according to the usual rules. After
describing the objects which have their own paragraphs, a list is given of the remaining
ones. The string tx1 is printed if there were no previous paragraphs, and the string tx2
otherwise. (For instance, you might want ‘‘On the ledge you can see’’ and ‘‘On the
ledge you can also see’’.) After the list, nothing else is printed, not even a full stop.
Routine returns The number of objects printed in the list, possibly zero.





§  

LoopOverScope(R,actor) see §32

Calls routine R(obj) for each object obj in scope for the given actor. If no actor is
given, the actor is assumed to be the player.
No return value

LTI_Insert(position,character) see §36

Inserts the given character at the given position in the standard library array buffer
used to hold the text typed by the player, moving subsequent text along to make room.
(This is protected against overflowing the buffer.)
No return value

MoveFloatingObjects() see §8

‘‘Floating objects’’ is Inform library jargon for ‘‘objects which use found_in to be
present in several locations at once’’. This routine adjusts the positions of objects across
the whole game, ensuring that they are consistent with the current states of the property
found_in and the attribute absent, and should be called after any game event which
has changed these states.
No return value

NextWord() see §28
Finds the next dictionary word in the player’s input, that is, the word at position wn in
the input, moving the word number wn on by one. (The first word is at position 1.)
Routine returns The dictionary value, or 0 if the word is not in the dictionary or if the
word stream has run out, or the constant THEN1__WD if the ‘‘word’’ was a full stop, or
the constant COMMA_WORD if it was a comma.

NextWordStopped() see §28

Finds the next dictionary word in the player’s input, that is, the word at position wn in
the input, moving the word number wn on by one. (The first word is at position 1.)
Routine returns The dictionary value, or 0 if the word is not in the dictionary, or the
constant THEN1__WD if the ‘‘word’’ was a full stop, or the constant COMMA_WORD if it was
a comma, or −1 if the word stream has run out.

NounDomain(o1,o2,type)

This routine is one of the keystones of the parser, but see also ParseToken below:
the objects given are the domains to search through when parsing, almost always the
location and the actor, and the type indicates a token. The only tokens safely usable are:
NOUN_TOKEN, for noun , HELD_TOKEN, for held and CREATURE_TOKEN, for creature .
The routine parses the best single object name it can from the current position of wn.
Routine returns nothing for ‘‘no match’’, or the object matched for a success, or
the constant REPARSE_CODE to indicate that it had to ask a clarifying question: this





§  

reconstructed the input drastically and the parser must begin all over again. NounDomain
should only be used by general parsing routines and these should always return
GPR_REPARSE if NounDomain returned REPARSE_CODE, thus passing the buck upwards.

ObjectIsUntouchable(obj,flag) see §32

Determines whether any solid barrier, that is, any container that is not open, lies
between the player and obj. If flag is true, this routine never prints anything;
otherwise it prints a message like ‘‘You can’t, because . . . is in the way.’’ if any barrier
is found.
Routine returns true if a barrier is found, false if not.

OffersLight(obj) see §19
Determines whether or not obj ‘‘offers light’’, i.e., contains light so that its contents
are visible to each other: see §19 for a more exact definition.
Routine returns true or false.

ParseToken(tokentype,tokendata) see §31

This is the library’s own ‘‘general parsing routine’’, and parses the word stream against
the specified token. Because some of these tokens require too much setting-up work
to parse, and anyway are not very useful, only two token types are open to the public.
If tokentype is ELEMENTARY_TT, then tokendata must have one of the following val-
ues: NOUN_TOKEN, HELD_TOKEN, MULTI_TOKEN, MULTIHELD_TOKEN, MULTIEXCEPT_TOKEN,
MULTIINSIDE_TOKEN, CREATURE_TOKEN and NUMBER_TOKEN. Alternatively, tokentype
can be SCOPE_TT and tokendata must then be a ‘‘scope routine’’.
Routine returns GPR_FAIL if parsing fails; GPR_PREPOSITION if a match is made but
results in no data; GPR_NUMBER if a match is made, resulting in a number; GPR_MULTIPLE
if a match is made, resulting in a multiple object; GPR_REPARSE if the parser has had to
rewrite the text being parsed and would now like parsing to begin again from scratch;
otherwise, an object which the parser has matched against the text.

PlaceInScope(obj) see §32
Used in ‘‘scope routines’’ (only) when scope_stage is set to 2 (only). Places obj in
scope for the token currently being parsed. No other objects are placed in scope as a
result of this, unlike the case of ScopeWithin.
No return value

PlayerTo(obj,flag) see §21
Moves the player to obj, which can either be a location or something enterable. If
flag is false, then run a Look action to print out a room description: but if flag is
true, print nothing, and if flag is 2, print a room description but abbreviate it if the
room has been visited before.
No return value





§  

PronounNotice(obj) see §33
Resets the pronouns to the object obj. This means that all pronouns which can match
against the object are set equal to it: for instance, ‘‘Aunt Jemima’’ would match ’her’
but not ’it’, ‘‘the grapes’’ would match ’them’ and so on.
No return value

PronounValue(pronoun) see §33
Finds the current setting of pronoun, which has to be the dictionary value of a legal
pronoun in the current language: in the case of English, that means ’it’, ’him’, ’her’
or ’them’.
Routine returns The setting, or nothing if it is unset.

ScopeWithin(obj) see §32
Used in ‘‘scope routines’’ (only) when scope_stage is set to 2 (only). Places the
contents of obj in scope for the token currently being parsed, and applies the rules of
scope recursively so that contents of see-through objects are also in scope, as is anything
added to scope.
No return value

SetPronoun(pronoun,obj) see §33
Changes the current setting of pronoun, which has to be the dictionary value of a legal
pronoun in the current language: in the case of English, that means ’it’, ’him’, ’her’
or ’them’.
No return value

SetTime(time,rate) see §20
Set the game clock (a 24-hour clock) to the given time (in seconds since the start of the
day), to run at the given rate r: r = 0 means it does not run, if r > 0 then r seconds
pass every turn, if r < 0 then −r turns pass every second.
No return value

StartDaemon(obj) see §20
Makes the daemon of the object obj active, so that its daemon routine will be called at
the end of every turn.
No return value

StartTimer(obj,period) see §20
Makes the timer of the object obj active. Its time_left property is set initially to
period, then decreased by 1 at the end of every turn in which it was positive. At the end
of the turn when it was zero, the timer is stopped and the object’s time_out property
is called.
No return value





§  

StopDaemon(obj) see §20

Makes the daemon of the object obj no longer active, so that its daemon routine will no
longer be called at the end of every turn.
No return value

StopTimer(obj) see §20

Makes the timer of the object obj no longer active, so that its time_left routine will
no longer be decreased and time_out will not be called as originally scheduled.
No return value

TestScope(obj,actor) see §32

Tests whether the object obj is in scope to the given actor. If no actor is given, the
actor is assumed to be the player.
Routine returns true or false.

TryNumber(wordnum) see §28

Tries to parse the word at wordnum as a non-negative number, recognising decimal
numbers and English ones from ‘‘one’’ to ‘‘twenty’’.
Routine returns −1000 if it fails altogether, or the number, except that values exceeding
10000 are rounded down to 10000.

UnsignedCompare(a,b)

The usual > condition performs a signed comparison, and occasionally, usually when
comparing addresses in memory of routines or strings, you need an unsigned compari-
son.
Routine returns Returns 1 if a > b, 0 if a = b and −1 if a < b, regarding a and b as
unsigned numbers between 0 and 65535. (That is, regarding -1 as 65535, -2 as 65534,
. . ., -32768 as 32768.)

WordAddress(wordnum) see §28

Find where word number wordnum from what the player typed is stored.
Routine returns The -> array holding the text of the word.

WordInProperty(word,obj,prop) see §34

Tests whether word is one of the dictionary values listed in the array given as the
property prop of object obj. (Most often used to see if a given dictionary word is one
of the name values.)
Routine returns true or false.





§  

WordLength(wordnum) see §28

Find the length (number of letters) of the word numbered wordnum from what the
player typed.
Routine returns The length.

WriteListFrom(obj,st) see §27

Write a list of obj and its siblings, with the style being st. To list all the objects inside
X, list from child(X). The style is made up by adding together some of the following
constants:

NEWLINE_BIT New-line after each entry
INDENT_BIT Indent each entry according to depth
FULLINV_BIT Full inventory information after entry
ENGLISH_BIT English sentence style, with commas and ‘and’
RECURSE_BIT Recurse downwards with usual rules
ALWAYS_BIT Always recurse downwards
TERSE_BIT More terse English style
PARTINV_BIT Only brief inventory information after entry
DEFART_BIT Use the definite article in list
WORKFLAG_BIT At top level (only), only list objects

which have the workflag attribute
ISARE_BIT Prints ‘‘ is " or ‘‘ are " before list
CONCEAL_BIT Misses out concealed or scenery objects

YesOrNo()
Assuming that a question has already been printed, wait for the player to type ‘‘yes’’,
‘‘y’’, ‘‘no’’ or ‘‘n’’.
Routine returns true for ‘‘yes’’ or ‘‘y’’, false for ‘‘no’’ or ‘‘n’’.





§A4 Library message numbers

Answer: ‘‘There is no reply.’’
Ask: ‘‘There is no reply.’’
Attack: ‘‘Violence isn’t the answer to this one.’’
Blow: ‘‘You can’t usefully blow that/those.’’
Burn: ‘‘This dangerous act would achieve little.’’
Buy: ‘‘Nothing is on sale.’’
Climb: ‘‘I don’t think much is to be achieved by that.’’
Close: 1. ‘‘That’s/They’re not something you can close.’’ 2. ‘‘That’s/They’re

already closed.’’ 3. ‘‘You close 〈x1〉.’’
Consult: ‘‘You discover nothing of interest in 〈x1〉.’’
Cut: ‘‘Cutting that/those up would achieve little.’’
Dig: ‘‘Digging would achieve nothing here.’’
Disrobe: 1. ‘‘You’re not wearing that/those.’’ 2. ‘‘You take off 〈x1〉.’’
Drink: ‘‘There’s nothing suitable to drink here.’’
Drop: 1. ‘‘The 〈x1〉 is/are already here.’’ 2. ‘‘You haven’t got that/those.’’ 3.

‘‘(first taking 〈x1〉 off)’’ 4. ‘‘Dropped.’’
Eat: 1. ‘‘That’s/They’re plainly inedible.’’ 2. ‘‘You eat 〈x1〉. Not bad.’’
EmptyT: 1. 〈x1〉 ‘‘ can’t contain things.’’ 2. 〈x1〉 ‘‘ is/are closed.’’ 3. 〈x1〉 ‘‘ is/are

empty already.’’ 4. ‘‘That would scarcely empty anything.’’
Enter: 1. ‘‘But you’re already on/in 〈x1〉.’’ 2. ‘‘That’s/They’re not something you

can enter.’’ 3. ‘‘You can’t get into the closed 〈x1〉.’’ 4. ‘‘You can only get
into something freestanding.’’ 5. ‘‘You get onto/into 〈x1〉.’’

Examine: 1. ‘‘Darkness, noun. An absence of light to see by.’’ 2. ‘‘You see nothing
special about 〈x1〉.’’ 3. ‘‘〈x1〉 is/are currently switched on/off.’’

Exit: 1. ‘‘But you aren’t in anything at the moment.’’ 2. ‘‘You can’t get out of the
closed 〈x1〉.’’ 3. ‘‘You get off/out of 〈x1〉.’’

Fill: ‘‘But there’s no water here to carry.’’
FullScore: 1. ‘‘The score is/was made up as follows:^’’ 2. ‘‘finding sundry items’’

3. ‘‘visiting various places’’ 4. ‘‘total (out of MAX_SCORE)’’
GetOff: ‘‘But you aren’t on 〈x1〉 at the moment.’’
Give: 1. ‘‘You aren’t holding 〈x1〉.’’ 2. ‘‘You juggle 〈x1〉 for a while, but don’t

achieve much.’’ 3. ‘‘〈x1〉 doesn’t/don’t seem interested.’’
Go: 1. ‘‘You’ll have to get off/out of 〈x1〉 first.’’ 2. ‘‘You can’t go that way.’’

3. ‘‘You are unable to climb 〈x1〉.’’ 4. ‘‘You are unable to descend 〈x1〉.’’
5. ‘‘You can’t, since 〈x1〉 is/are in the way.’’ 6. ‘‘You can’t, since 〈x1〉 leads
nowhere.’’

Insert: 1. ‘‘You need to be holding 〈x1〉 before you can put it/them into something
else.’’ 2. ‘‘That/Those can’t contain things.’’ 3. ‘‘〈x1〉 is/are closed.’’ 4.
‘‘You’ll need to take it/them off first.’’ 5. ‘‘You can’t put something inside
itself.’’ 6. ‘‘(first taking it/them off)^’’ 7. ‘‘There is no more room in 〈x1〉.’’
8. ‘‘Done.’’ 9. ‘‘You put 〈x1〉 into 〈second〉.’’





§   

Inv: 1. ‘‘You are carrying nothing.’’ 2. ‘‘You are carrying’’
Jump: ‘‘You jump on the spot, fruitlessly.’’
JumpOver: ‘‘You would achieve nothing by this.’’
Kiss: ‘‘Keep your mind on the game.’’
Listen: ‘‘You hear nothing unexpected.’’
LMode1: ‘‘ is now in its normal brief printing mode, which gives long descriptions

of places never before visited and short descriptions otherwise.’’
LMode2: ‘‘ is now in its verbose mode, which always gives long descriptions of

locations (even if you’ve been there before).’’
LMode3: ‘‘ is now in its superbrief mode, which always gives short descriptions of

locations (even if you haven’t been there before).’’
Lock: 1. ‘‘That doesn’t/They don’t seem to be something you can lock.’’ 2.

‘‘That’s/They’re locked at the moment.’’ 3. ‘‘First you’ll have to close 〈x1〉.’’
4. ‘‘That doesn’t/Those don’t seem to fit the lock.’’ 5. ‘‘You lock 〈x1〉.’’

Look: 1. ‘‘ (on 〈x1〉)’’ 2. ‘‘ (in 〈x1〉)’’ 3. ‘‘ (as 〈x1〉)’’ 4. ‘‘^On 〈x1〉 is/are
〈list〉’’ 5. ‘‘[On/In 〈x1〉] you/You can also see 〈list〉 [here].’’ 6. ‘‘[On/In 〈x1〉]
you/You can see 〈list〉 [here].’’

LookUnder: 1. ‘‘But it’s dark.’’ ‘‘You find nothing of interest.’’
Mild: ‘‘Quite.’’
ListMiscellany: 1. ‘‘ (providing light)’’ 2. ‘‘ (which is/are closed)’’ 3. ‘‘ (closed

and providing light)’’ 4. ‘‘ (which is/are empty)’’ 5. ‘‘ (empty and providing
light)’’ 6. ‘‘ (which is/are closed and empty)’’ 7. ‘‘ (closed, empty and
providing light)’’ 8. ‘‘ (providing light and being worn’’ 9. ‘‘ (providing light’’
10. ‘‘ (being worn’’ 11. ‘‘ (which is/are ’’ 12. ‘‘open’’ 13. ‘‘open but
empty’’ 14. ‘‘closed’’ 15. ‘‘closed and locked’’ 16. ‘‘ and empty’’ 17. ‘‘
(which is/are empty)’’ 18. ‘‘ containing ’’ 19. ‘‘ (on ’’ 20. ‘‘, on top of ’’
21. ‘‘ (in ’’ 22. ‘‘, inside ’’

Miscellany: 1. ‘‘(considering the first sixteen objects only)^’’ 2. ‘‘Nothing to do!’’
3. ‘‘ You have died ’’ 4. ‘‘ You have won ’’ 5. (The RESTART, RESTORE,
QUIT and possibly FULL and AMUSING query, printed after the game is over.)
6. ‘‘[Your interpreter does not provide undo. Sorry!]’’ 7. ‘‘Undo failed. [Not all
interpreters provide it.]’’ 8. ‘‘Please give one of the answers above.’’ 9. ‘‘^It is
now pitch dark in here!’’ 10. ‘‘I beg your pardon?’’ 11. ‘‘[You can’t ‘‘undo’’
what hasn’t been done!]’’ 12. ‘‘[Can’t ‘‘undo’’ twice in succession. Sorry!]’’
13. ‘‘[Previous turn undone.]’’ 14. ‘‘Sorry, that can’t be corrected.’’ 15.
‘‘Think nothing of it.’’ 16. ‘‘‘‘Oops’’ can only correct a single word.’’ 17. ‘‘It
is pitch dark, and you can’t see a thing.’’ 18. ‘‘yourself’’ (the short name of the
selfobj object) 19. ‘‘As good-looking as ever.’’ 20. ‘‘To repeat a command
like ‘‘frog, jump’’, just say ‘‘again’’, not ‘‘frog, again’’.’’ 21. ‘‘You can hardly
repeat that.’’ 22. ‘‘You can’t begin with a comma.’’ 23. ‘‘You seem to
want to talk to someone, but I can’t see whom.’’ 24. ‘‘You can’t talk to 〈x1〉.’’
25. ‘‘To talk to someone, try ‘‘someone, hello’’ or some such.’’ 26. ‘‘(first
taking not_holding)’’ 27. ‘‘I didn’t understand that sentence.’’ 28. ‘‘I only





§   

understood you as far as wanting to ’’ 29. ‘‘I didn’t understand that number.’’
30. ‘‘You can’t see any such thing.’’ 31. ‘‘You seem to have said too little!’’
32. ‘‘You aren’t holding that!’’ 33. ‘‘You can’t use multiple objects with that
verb.’’ 34. ‘‘You can only use multiple objects once on a line.’’ 35. ‘‘I’m not
sure what ‘‘〈pronoun〉’’ refers to.’’ 36. ‘‘You excepted something not included
anyway!’’ 37. ‘‘You can only do that to something animate.’’ 38. ‘‘That’s not
a verb I recognise.’’ 39. ‘‘That’s not something you need to refer to in the course
of this game.’’ 40. ‘‘You can’t see ‘‘〈pronoun〉’’ (〈value〉) at the moment.’’
41. ‘‘I didn’t understand the way that finished.’’ 42. ‘‘None/only 〈x1〉 of those
is/are available.’’ 43. ‘‘Nothing to do!’’ 44. ‘‘There are none at all available!’’
45. ‘‘Who do you mean, ’’ 46. ‘‘Which do you mean, ’’ 47. ‘‘Sorry, you can
only have one item here. Which exactly?’’ 48. ‘‘Whom do you want [〈actor〉] to
〈command〉?’’ 49. ‘‘What do you want [〈actor〉] to 〈command〉?’’ 50. ‘‘Your
score has just gone up/down by 〈x1〉 point/points.’’ 51. ‘‘(Since something
dramatic has happened, your list of commands has been cut short.)’’ 52. ‘‘Type
a number from 1 to 〈x1〉, 0 to redisplay or press ENTER.’’ 53. ‘‘[Please press
SPACE.]’’

No: see Yes
NotifyOff: ‘‘Score notification off.’’
NotifyOn: ‘‘Score notification on.’’
Objects: 1. ‘‘Objects you have handled:^’’ 2. ‘‘None.’’ 3. ‘‘ (worn)’’ 4. ‘‘

(held)’’ 5. ‘‘ (given away)’’ 6. ‘‘ (in 〈x1〉)’’ [without article] 7. ‘‘ (in 〈x1〉)’’
[with article] 8. ‘‘ (inside 〈x1〉)’’ 9. ‘‘ (on 〈x1〉)’’ 10. ‘‘ (lost)’’

Open: 1. ‘‘That’s/They’re not something you can open.’’ 2. ‘‘It seems/They
seem to be locked.’’ 3. ‘‘That’s/They’re already open.’’ 4. ‘‘You open 〈x1〉,
revealing 〈children〉’’ 5. ‘‘You open 〈x1〉.’’

Order: ‘‘〈x1〉 has/have better things to do.’’
Places: ‘‘You have visited: ’’
Pray: ‘‘Nothing practical results from your prayer.’’
Prompt: 1. ‘‘^>’’
Pronouns: 1. ‘‘At the moment, ’’ 2. ‘‘means ’’ 3. ‘‘is unset ’’ 4. ‘‘no pronouns

are known to the game.’’
Pull: 1. ‘‘It is/Those are fixed in place.’’ 2. ‘‘You are unable to.’’ 3. ‘‘Nothing

obvious happens.’’ 4. ‘‘That would be less than courteous.’’
Push: see Pull
PushDir: 1. ‘‘Is that the best you can think of?’’ 2. ‘‘That’s not a direction.’’ 3.

‘‘Not that way you can’t.’’
PutOn: 1. ‘‘You need to be holding 〈x1〉 before you can put it/them on top of

something else.’’ 2. ‘‘You can’t put something on top of itself.’’ 3. ‘‘Putting
things on 〈x1〉 would achieve nothing.’’ 4. ‘‘You lack the dexterity.’’ 5. ‘‘(first
taking it/them off)^’’ 6. ‘‘There is no more room on 〈x1〉.’’ 7. ‘‘Done.’’ 8.
‘‘You put 〈x1〉 on <second>.’’

Quit: 1. ‘‘Please answer yes or no.’’ 2. ‘‘Are you sure you want to quit? ’’





§   

Remove: 1. ‘‘It is/They are unfortunately closed.’’ 2. ‘‘But it isn’t/they aren’t there
now.’’ 3. ‘‘Removed.’’

Restart: 1. ‘‘Are you sure you want to restart? ’’ 2. ‘‘Failed.’’
Restore: 1. ‘‘Restore failed.’’ 2. ‘‘Ok.’’
Rub: ‘‘You achieve nothing by this.’’
Save: 1. ‘‘Save failed.’’ 2. ‘‘Ok.’’
Score: ‘‘You have so far/In that game you scored 〈score〉 out of a possible MAX_SCORE,

in 〈turns〉 turn/turns’’
ScriptOn: 1. ‘‘Transcripting is already on.’’ 2. ‘‘Start of a transcript of’’
ScriptOff: 1. ‘‘Transcripting is already off.’’ 2. ‘‘^End of transcript.’’
Search: 1. ‘‘But it’s dark.’’ 2. ‘‘There is nothing on 〈x1〉.’’ 3. ‘‘On 〈x1〉 is/are

〈list of children〉.’’ 4. ‘‘You find nothing of interest.’’ 5. ‘‘You can’t see
inside, since 〈x1〉 is/are closed.’’ 6. ‘‘〈x1〉 is/are empty.’’ 7. ‘‘In 〈x1〉 is/are
〈list of children〉.’’

Set: ‘‘No, you can’t set that/those.’’
SetTo: ‘‘No, you can’t set that/those to anything.’’
Show: 1. ‘‘You aren’t holding 〈x1〉.’’ 2. ‘‘〈x1〉 is/are unimpressed.’’
Sing: ‘‘Your singing is abominable.’’
Sleep: ‘‘You aren’t feeling especially drowsy.’’
Smell: ‘‘You smell nothing unexpected.’’
Sorry: ‘‘Oh, don’t apologise.’’
Squeeze: 1. ‘‘Keep your hands to yourself.’’ 2. ‘‘You achieve nothing by this.’’
Strong: ‘‘Real adventurers do not use such language.’’
Swim: ‘‘There’s not enough water to swim in.’’
Swing: ‘‘There’s nothing sensible to swing here.’’
SwitchOff: 1. ‘‘That’s/They’re not something you can switch.’’ 2. ‘‘That’s/ They’re

already off.’’ 3. ‘‘You switch 〈x1〉 off.’’
SwitchOn: 1. ‘‘That’s/They’re not something you can switch.’’ 2. ‘‘That’s/ They’re

already on.’’ 3. ‘‘You switch 〈x1〉 on.’’
Take: 1. ‘‘Taken.’’ 2. ‘‘You are always self-possessed.’’ 3. ‘‘I don’t suppose 〈x1〉

would care for that.’’ 4. ‘‘You’d have to get off/out of 〈x1〉 first.’’ 5. ‘‘You
already have that/those.’’ 6. ‘‘That seems/Those seem to belong to 〈x1〉.’’ 7.
‘‘That seems/Those seem to be a part of 〈x1〉.’’ 8. ‘‘That isn’t/Those aren’t
available.’’ 9. ‘‘〈x1〉 isn’t/aren’t open.’’ 10. ‘‘That’s/They’re hardly portable.’’
11. ‘‘That’s/They’re fixed in place.’’ 12. ‘‘You’re carrying too many things
already.’’ 13. ‘‘(putting 〈x1〉 into SACK_OBJECT to make room)’’

Taste: ‘‘You taste nothing unexpected.’’
Tell: 1. ‘‘You talk to yourself a while.’’ 2. ‘‘This provokes no reaction.’’
Touch: 1. ‘‘Keep your hands to yourself!’’ 2. ‘‘You feel nothing unexpected.’’ 3.

‘‘If you think that’ll help.’’
Think: ‘‘What a good idea.’’
Tie: ‘‘You would achieve nothing by this.’’





§   

ThrowAt: 1. ‘‘Futile.’’ 2. ‘‘You lack the nerve when it comes to the crucial
moment.’’

Turn: see Pull
Unlock: 1. ‘‘That doesn’t seem to be something you can unlock.’’ 2. ‘‘It’s/ They’re

unlocked at the moment.’’ 3. ‘‘That doesn’t/Those don’t seem to fit the lock.’’
4. ‘‘You unlock 〈x1〉.’’

VagueGo: ‘‘You’ll have to say which compass direction to go in.’’
Verify: 1. ‘‘The game file has verified as intact.’’ 2. ‘‘The game file did not verify

properly, and may be corrupted (or you may be running it on a very primitive
interpreter which is unable properly to perform the test).’’

Wait: ‘‘Time passes.’’
Wake: ‘‘The dreadful truth is, this is not a dream.’’
WakeOther: ‘‘That seems unnecessary.’’
Wave: 1. ‘‘But you aren’t holding that/those.’’ 2. ‘‘You look ridiculous waving

〈x1〉.’’
WaveHands: ‘‘You wave, feeling foolish.’’
Wear: 1. ‘‘You can’t wear that/those!’’ 2. ‘‘You’re not holding that/those!’’ 3.

‘‘You’re already wearing that/those!’’ 4. ‘‘You put on 〈x1〉.’’
Yes: ‘‘That was a rhetorical question.’’





§A5 Entry point routines
By definition, an ‘‘entry point routine’’ is a routine which you can choose
whether or not to define in your source code. If you do, the library will make
calls to it from time to time, allowing it to change the way the game rules are
administered. The exception is Initialise, which is compulsory.

AfterLife() see §21

When the player has died (a condition signalled by the variable deadflag being set to a
non-zero value other than 2, which indicates winning), this routine is called: by setting
deadflag to be false again it can resurrect the player.
No return value

AfterPrompt() see §22

Called just after the prompt is printed: therefore, called after all the printing for this
turn is definitely over. A useful opportunity to use box to display quotations without
them scrolling away.
No return value

Amusing() see §21

Called to provide an ‘‘afterword’’ for players who have won: for instance, it might
advertise some features which a successful player might never have noticed. This will
only be called if you have also defined the constant AMUSING_PROVIDED in your own
code.
No return value

BeforeParsing() see §30

Called after the parser has read in some text and set up the buffer and parse tables,
but has done nothing else yet except to set the word marker wn to 1. The routine can
do anything it likes to these tables provided they remain consistent with each other,
and can leave the word marker anywhere.
No return value

ChooseObjects(obj,c) see §33

When c is false, the parser is processing an ‘‘all’’ and has decided to exclude obj from
it; when c is true, it has decided to include it. When c is 2, the parser wants help
in resolving an ambiguity: perhaps using the action_to_be variable the routine must
decide how appropriate obj is for the given action.
Routine returns When c is false or true, return false to accept the parser’s decision,
1 to force inclusion of obj, 2 to force exclusion. When c is 2, return a numerical score
between 0 and 9, with 0 being ‘‘inappropriate’’ and 9 ‘‘very appropriate’’.





§   

DarkToDark() see §19

Called when a player goes from one dark room into another one, which is a splendid
excuse to kill the player off.

DeathMessage() see §21

If the player’s death occurs because you have set deadflag to a value of 3 or more, this
entry point is called to print up a suitable ‘‘You have died’’-style message.
No return value

GamePostRoutine() see §6

A kind of super-after rule, which applies to all actions in the game, whatever they are:
use this only in the last resort.
Routine returns false to allow the action to continue as usual, true to stop the action
and print nothing further.

GamePreRoutine() see §6

A kind of super-before rule, which applies to all actions in the game, whatever they
are: use this only in the last resort.
Routine returns false to allow the action to continue as usual, true to stop the action
and print nothing further.

Initialise() see §21

An opportunity to set up the initial state of the game. This routine is compulsory and
has one compulsory task: to set location to the place where the player begins, or to
the enterable object in or on which the player begins. It’s usual to print a welcoming
message as well.
Routine returns true or false to continue as usual; 2 to suppress the game banner,
which would otherwise be printed immediately after this routine is called.

InScope() see §32

An opportunity to change the library’s definition of what is in scope. This acts as
a sort of global version of a scope token routine: it should use the library routines
ScopeWithin and PlaceInScope to define what scope should be. It may want to look
at the library variable et_flag. If this is true, the scope is being worked out in order to
run through each_turn. If it’s false, then the scope is being worked out for everyday
parsing.
Routine returns false to tell the parser to add all the usual objects in scope as well, or
true to tell the parser that nothing further is in scope.





§   

LookRoutine() see §26

Called at the end of every Look action, that is, room description.
No return value

NewRoom() see §21

Called when the room changes, before any description of it is printed. This happens in
the course of any movements or uses of PlayerTo.
No return value

ParseNoun(obj) see §28

To do the job of parsing the name property (if parse_name hasn’t done it already).
This takes one argument, the object in question, and returns a value as if it were a
parse_name routine.
Routine returns The number of words matched, or 0 if there is no match, or −1 to
decline to make a decision and give the job back to the parser. Note that if −1 is
returned, the word number variable wn must be left set to the first word the parser
should look at -- probably the same value it had when ParseNoun was called, but not
necessarily.

ParseNumber(text,n) see §28

An opportunity to parse numbers in a different, or additional, way. The text to be
parsed is a byte array of length n starting at text.
Routine returns 0 to signal ‘‘no match’’, 1 to 10000 to signal ‘‘this number has been
matched’’.

ParserError(pe) see §33

The chance to print different parser error messages such as ‘‘I don’t understand that
sentence’’. pe is the parser error number and the table of possible values is given in §33.
Routine returns true to tell the parser that the error message has now been printed, or
false to allow it to carry on and print the usual one.

PrintRank() see §22

Completes the printing of the score. Traditionally, many games have awarded the
player a rank based on the current value of the variable score.
No return value

PrintTaskName(n) see §22

Prints the name of task n, which lies between 0 and NUMBER_TASKS minus 1.
No return value





§   

PrintVerb(v) see §30

A chance to change the verb printed out in a parser question (like ‘‘What do you want
to (whatever)?’’) in case an unusual verb via UnknownVerb has been constructed. v is
the dictionary address of the verb.
Routine returns true to tell the parser that the verb has now been printed, or false to
allow it to carry on and print the usual one.

TimePasses() see §20

Called after every game turn, which is to say, not after a group 1 action such as ‘‘score’’
or ‘‘save’’, but after any other activity. Use this entry point only as a last resort, as it’s
almost certainly easier and tidier to use timers and daemons.
No return value

UnknownVerb(word) see §30

Called by the parser when it hits an unknown verb, so that you can transform it into a
known one. word is the dictionary value of this unknown verb.
Routine returns false to allow the parser to carry on and print an error message, or
the dictionary value of a verb to use instead.




