
TABLE 1A: GENERAL OPERATORS

Lvl Operator Placed Asc Purpose

0 , between left separating values to work out

1 = between right set equal to

5 + between left 16-bit signed addition
- between left 16-bit signed subtraction

6 * between left 16-bit signed multiplication
/ between left 16-bit signed integer division
% between left 16-bit signed remainder
& between left bitwise AND
| between left bitwise OR
~ before bitwise NOT

7 -> between left byte array entry
--> between left word array entry

8 - before 16-bit signed negation

9 ++ before add 1 to then read
++ after read then add 1 to
-- before subtract 1 from then read
-- after read then subtract 1 from

10 .& between left property array
.# between left property array size

11 (...) after routine call

12 . between left property value

13 :: between left ‘‘superclass’’ operator

• ‘‘Lvl’’ refers to precedence level: thus *, on level 6, binds more tightly than
+, down on level 5, so that 1+2*3 means 1+(2*3).

• - is ‘‘left associative’’, so a-b-c means (a-b)-c. = is ‘‘right associative’’, so
v1=v2=7 means v1=(v2=7), setting both variables equal to 7.

• Although the table of operators has been divided over two pages, conditions
and expressions can be freely mixed. When a condition is used as a value, it
is always true (1) or false (0). When a value is used as a condition, any
non-zero value is considered true, and only zero is considered false.

TABLE 1B: CONDITION OPERATORS

Lvl Operator Placed Asc Purpose

2 && between left one condition AND another
|| between left one condition OR another
~~ before this condition NOT true

3 == between none equal to?
~= between none not equal to?
> between none greater than?
>= between none greater than or equal to?
< between none less than?
<= between none less than or equal to?
has between none object has this attribute?

hasnt between none object hasn’t this attribute?
in between none first obj a child of second?

notin between none first obj not a child of second?
ofclass between none obj inherits from class?
provides between none obj provides this property?

4 or between left separating alternative values

• Conditions have no associativity and if you type a==b==c then Inform will
ask you to add brackets for clarity.

• In the condition (C1 && C2), Inform decides on C1 first: if C1 is false then
C2 is never considered at all. Similarly, if C1 is true then (C1 || C2) must be
true and C2 is never considered.

TABLE 2A: LOWER ZSCII CHARACTER SET

+0 +1 +2 +3 +4 +5 +6 +7

0

8 del tab em new

16

24 esc

32 sp ! " # $ % & ’

40 () * + , - . /

48 0 1 2 3 4 5 6 7

56 8 9 : ; < = > ?

64 @ A B C D E F G

72 H I J K L M N O

80 P Q R S T U V W

88 X Y Z [\] ^

96 ‘ a b c d e f g

104 h i j k l m n o

112 p q r s t u v w

120 x y z { | } ~

• To convert a character to a ZSCII value, add the numbers in the same row
and column. For instance, the Inform constant ’J’ is 72 plus 2 equals 74.

• Blank boxes indicate that no character exists with that value. The value will
never be read from the keyboard and it is an error to try to print (char) it.

• Italicised entries can be read from the keyboard but not printed.

• ‘‘em’’ (an em-space) and ‘‘tab’’ (a tab-skip) are print-only, and only
available if Inform is compiling a Version 6 game.

• ZSCII does not (normally) have ‘‘smart quotes’’, that is, different characters
for opening and closing quotations ‘‘ and ’’. Some interpreters automatically
smarten them when printed, though. And ZSCII does have �French� and
�German� quotation marks (see table 2B).

TABLE 2B: HIGHER ZSCII CHARACTER SET

+0 +1 +2 +3 +4 +5 +6 +7

128 ↑ ↓ ← → f1 f2 f3

136 f4 f5 f6 f7 f8 f9 f10 f11

144 f12 k0 k1 k2 k3 k4 k5 k6

152 k7 k8 k9 ä
@:a

ö
@:o

ü
@:u

Ä
@:A

Ö
@:O

160 Ü
@:U

ß
@ss

»
@>>

«
@<<

ë
@:e

ı̈
@:i

ÿ
@:y

Ë
@:E

168 Ï
@:I

á
@’a

é
@’e

ı́
@’i

ó
@’o

ú
@’u

ý
@’y

Á
@’A

176 É
@’E

Í
@’I

Ó
@’O

Ú
@’U

Ý
@’Y

à
@‘a

è
@‘e

ı̀
@‘i

184 ò
@‘o

ù
@‘u

À
@‘A

È
@‘E

Ì
@‘I

Ò
@‘O

Ù
@‘U

â
@^a

192 ê
@^e

ı̂
@^i

ô
@^o

û
@^u

Â
@^A

Ê
@^E

Î
@^I

Ô
@^O

200 Û
@^U

å
@oa

Å
@oA

ø
@\o

Ø
@\O

ã
@~a

ñ
@~n

õ
@~o

208 Ã
@~A

Ñ
@~N

Õ
@~O

æ
@ae

Æ
@AE

ç
@,c

Ç
@,C

th
@th

216 eth
@et

Th
@Th

Eth
@Et

£
@LL

œ
@oe

Œ
@OE

¡
@!!

¿
@??

224

232

240

248 men dbl clk

• The cursor keys, function keys, numeric keypad keys and mouse clicks
(menu click, double click, single click) are read-only. Mouse support is
available only to a Version 6 game.
• The given escape-character sequences can be typed into source code. For
instance print "@AEsop"; prints ‘‘Æsop’’.
• ‘‘Eth’’ and ‘‘Th(orn)’’ are Icelandic characters.
• Characters 155 to 251 are configurable using the directive Zcharacter,
which can in principle move any Unicode character in. See §36.

TABLE 3: COMMAND LINE SWITCHES

Sw To Meaning

-d* 0 to 2 contract double spaces: never (0), after full stops (1)
after full stops, exclamation and question marks (2)

-e off/on economise by using the declared abbreviations
-g* 0 to 2 traces calls: none (0), all outside libraries (1), all (2)
-i off/on ignore default switches set within the file
-k off/on output Infix debugging information (and switch -D on)
-r off/on record all the text to a transcript file
-v* 3 to 8 compile to this Version of story file (default 5)
-C* 0 to 9 source is ASCII (0), or ISO 8859-1 to -9 (default 1)
-D off/on automatically include library’s debugging features
-F* 0 or 1 use temporary files to reduce memory consumption
-M off/on compile as a Module for future linking
-S on/off compile strict error-checking at run-time (on by default)
-U off/on link in precompiled library modules
-X off/on include the Infix debugger

-a off/on trace assembly-language (without hex dumps; see -t)
-c off/on more concise error messages
-f off/on frequencies mode: show how useful abbreviations are
-h* on/1/2 print help information: on filenaming (1), switches (2)
-j off/on list objects as constructed
-l off/on list every statement run through Inform
-m off/on say how much memory has been allocated
-n off/on print numbers of properties, attributes and actions
-o off/on print offset addresses
-p off/on give percentage breakdown of story file
-q off/on keep quiet about obsolete usages
-s off/on give statistics
-t off/on trace assembly-language (with full hex dumps; see -a)
-u off/on work out most useful abbreviations (very very slowly)
-w off/on disable warning messages
-x off/on print a hash # for every 100 lines compiled
-y off/on trace linking system
-z off/on print memory map of the Z-machine
-E* 0, 1, 2 errors in Acorn (0), Microsoft (1) or Mac (2) style

• The lower group has no effect except on what is printed out.

• The * stands for a decimal digit, 0 to 9. You can also clear any switch with
a tilde, so -~x turns -x off.

TABLE 4: STATEMENTS

box 〈line-1〉 〈line-2〉 . . . 〈line-n〉
break
continue
do 〈code block〉 until 〈condition〉
font on or off
for (〈initial code〉:〈condition to carry on〉:〈update code〉) 〈code block〉
give 〈object〉 〈attribute-1〉 . . . 〈attribute-n〉
if 〈condition〉 〈code block〉
if 〈condition〉 〈code block〉 else 〈code-block〉
jump 〈label〉
move 〈object〉 to 〈destination〉
new_line
objectloop 〈condition choosing objects〉 〈code block〉
print 〈list of printing specifications〉
print_ret 〈list of printing specifications〉
remove 〈object〉
return 〈optional value〉
rfalse
rtrue
spaces 〈number of spaces to print〉
string 〈number〉 〈text〉
style roman or bold or underline or reverse or fixed
switch (〈value〉) 〈block of cases . . . default: . . .〉
while 〈condition〉 〈code-block〉

• Statements must be given in lower case.
• A statement beginning with a double-quoted string instead of a keyword
like if is taken as a print_ret statement.

• Code blocks consist of either a single statement or a group of statements
enclosed in braces { and }.
• The following low-level statements should not be used for Inform games:

inversion
quit
read 〈text-buffer〉 〈parsing-buffer〉
restore 〈label〉
save 〈label〉

TABLE 5: DIRECTIVES

Abbreviate 〈word-1〉 . . . 〈word-n〉
Array 〈new-name〉 〈type〉 〈initial values〉
Attribute 〈new-name〉
Class 〈new-name〉 〈body of definition〉
Constant 〈new-name〉 = 〈value〉
Default 〈possibly-new-name〉
End
Endif
Extend 〈grammar extension〉
Global 〈new-name〉 = 〈value〉
Ifdef 〈symbol-name〉
Ifndef 〈symbol-name〉
Ifnot
Iftrue 〈condition〉
Iffalse 〈condition〉
Import 〈list of imported goods〉
Include 〈source code filename〉
Link 〈module filename〉
Lowstring 〈text〉
Message 〈message-type〉 〈diagnostic-message〉
Object 〈header〉 〈body of definition〉
Property 〈new-name〉
Release 〈number〉
Replace 〈routine-name〉
Serial "〈serial number〉"
Switches 〈list of switches〉
Statusline score or time
System_file
Verb 〈verb-definition〉
Zcharacter etc.

• Nearby is an obsolete abbreviation for Object ->, now deprecated. A
few other directives, Dictionary, Fake_action, Ifv3, Ifv5, Stub, Trace and
Version, are either also obsolete or for compiler maintenance only.

TABLE 6A: ACTIONS PROVIDED BY THE LIBRARY: GROUP 1

Action Typically produced by Notes

Pronouns ‘‘pronouns’’ lists settings of ‘‘it’’ and so on
Quit ‘‘quit’’
Restart ‘‘restart’’
Restore ‘‘restore’’
Save ‘‘save’’
Verify ‘‘verify’’ checks story file integrity
ScriptOn ‘‘script on’’
ScriptOff ‘‘script off’’
NotifyOn ‘‘notify on’’ score change notification on
NotifyOff ‘‘notify off’’ and off
Places ‘‘places’’ list places visited
Objects ‘‘objects’’ list objects moved
Score ‘‘score’’
FullScore ‘‘fullscore’’ full breakdown of score
Version ‘‘version’’ prints version numbers
LMode1 ‘‘brief’’ normal room descriptions
LMode2 ‘‘verbose’’ always full room descriptions
LMode3 ‘‘superbrief’’ always abbreviated

• A number of other group 1 actions are present in a game compiled with
the -D ‘‘Debugging’’ switch. These actions come and go with different library
releases and their presence shouldn’t be relied on. See the library’s ‘‘Grammar’’
file to see the current set.

• The library also defines four fake actions which have nothing to do with
the world model. TheSame and PluralFound are defined by the parser as ways
for the program to communicate with it. Miscellany and Prompt are defined
as slots for LibraryMessages.

TABLE 6B: ACTIONS PROVIDED BY THE LIBRARY: GROUP 2

Action Typically produced by Notes

Look ‘‘look’’
Examine ‘‘examine fish’’
Search ‘‘look inside cup’’
Inv ‘‘inventory’’
InvTall ‘‘inventory tall’’ becomes Inv
InvWide ‘‘inventory wide’’ becomes Inv
Take ‘‘take fish’’ KS
Drop ‘‘drop fish’’ KS
Remove ‘‘take dice from cup’’ KS
PutOn ‘‘put cup on board’’ KS
Insert ‘‘put dice in cup’’ KS
LetGo fake caused by Remove
Receive fake caused by PutOn and Insert
Empty ‘‘empty sack’’ becomes EmptyT d_obj
EmptyT ‘‘empty bag on box’’ for each item inside, becomes

Remove then Drop/PutOn/Insert
Transfer ‘‘transfer egg to box’’ becomes Drop/PutOn/Insert
Go ‘‘north’’ KS special rules apply: see §15
Enter ‘‘enter cage’’ KS can become Go if into a door
GetOff ‘‘get off table’’ KS
GoIn ‘‘enter’’ becomes Go in_obj
Exit ‘‘exit’’ KS can become Go out_obj
Unlock ‘‘unlock door’’ KS
Lock ‘‘lock door’’ KS
SwitchOn ‘‘switch radio on’’ KS
SwitchOff ‘‘switch radio off’’ KS
Open ‘‘open door’’ KS
Close ‘‘close door’’ KS
Disrobe ‘‘take hat off’’ KS
Wear ‘‘wear hat’’ KS
Eat ‘‘eat fish’’ KS
Wait ‘‘wait’’

• Actions marked KS run ‘‘silently’’ when the library’s variable keep_silent
is set true. This means that if successful they print nothing: if unsuccessful,
however, they print text as normal.
• Look and Examine actions send after messages after printing descriptions.
Search sends after when the search is known to be possible but before the
result is printed.

TABLE 6C: ACTIONS PROVIDED BY THE LIBRARY: GROUP 3

Action Typically produced by Notes

LookUnder ‘‘look under doormat’’
Listen ‘‘listen [to tape]’’ noun can be nothing
Taste ‘‘taste marinade’’
Touch ‘‘touch paint’’

Pull ‘‘pull trolley’’
Push ‘‘push trolley’’
Wave ‘‘wave wand’’
Turn ‘‘turn dial’’
PushDir ‘‘push trolley north’’ special rules apply: see §15
ThrowAt ‘‘throw dart at board’’
ThrownAt fake caused by ThrowAt
JumpOver ‘‘jump over fence’’
Tie ‘‘tie rope [to hook]’’ second can be nothing
Drink ‘‘drink absinthe’’
Fill ‘‘fill bottle’’
Attack ‘‘fight soldiers’’
Swing ‘‘swing on rope’’
Blow ‘‘blow pipe’’
Rub ‘‘clean table’’
Set ‘‘set trap’’
SetTo ‘‘set timer to 10’’ second not an object
Buy ‘‘buy ice cream’’
Climb ‘‘climb ladder’’
Squeeze ‘‘squash tomato’’
Burn ‘‘burn papers [with match]’’ second can be nothing
Dig ‘‘dig lawn [with spade]’’ second can be nothing
Cut ‘‘cut paper’’

Consult ‘‘look up fish in book’’ sets noun and the topic
Tell ‘‘tell jemima about austin’’ sets noun and the topic
Answer ‘‘say confirmed to avon’’ sets noun and the topic
Ask ‘‘ask jemima about isaac’’ sets noun and the topic
Give ‘‘give coin to troll’’
Show ‘‘show pass to guard’’
AskFor ‘‘ask jemima for daisies’’
WakeOther ‘‘wake sleeper’’
Kiss ‘‘kiss jemima’’

TABLE 6C (CONTINUED)

Action Typically produced by Notes

Sleep ‘‘sleep’’
Sing ‘‘sing’’
WaveHands ‘‘wave’’ see also Wave
Swim ‘‘swim’’, ‘‘dive’’
Sorry ‘‘sorry’’
Strong very rude words
Mild fairly rude words
Jump ‘‘jump’’ see also JumpOver
Think ‘‘think’’
Smell ‘‘smell coffee’’ noun can be nothing
Pray ‘‘pray’’
VagueGo ‘‘go’’
Yes ‘‘yes’’
No ‘‘no’’
Wake ‘‘wake up’’ see also WakeOther

TABLE 6D: ACTIONS SENT TO LIFE RULES

Action Typically produced by

Answer ‘‘say yes to cashier’’
Ask ‘‘ask woman about plutonium’’
Attack ‘‘fight soldiers’’
Give ‘‘give coin to charon’’
Kiss ‘‘kiss jemima’’
Order ‘‘thorin, go west’’
Show ‘‘show pass to benton’’
Tell ‘‘tell paris about helen’’
ThrowAt ‘‘throw axe at dwarf’’
WakeOther ‘‘wake beauty up’’

